Bài 4:
a) Ta có: AM+MB=AB
AN+NC=AC
mà MB=NC
và AB=AC
nên AM=AN
Xét ΔABC có
\(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)
nên MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
b) Ta có: ΔABC cân tại A
nên \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-40^0}{2}=70^0\)
\(\Leftrightarrow\widehat{BMN}=\widehat{CNM}=180^0-70^0=110^0\)
Bài 3:
Ta có: ABCD là hình thang cân
nên AD=BC
mà AD=AB
nên BC=AB
Xét ΔBAC có BA=BC(cmt)
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)(hai góc ở đáy)
mà \(\widehat{BAC}=\widehat{ACD}\)(hai góc so le trong, AB//CD
nên \(\widehat{BCA}=\widehat{DCA}\)
hay CA là tia phân giác của \(\widehat{BCD}\)