Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Hồng Phúc

Giải dùm mình với ạ chi tiết nhớ cảm ơnn

loading...

 

Nguyễn Việt Lâm
21 tháng 12 2022 lúc 22:22

a.

Khi \(x=4\Rightarrow A=\dfrac{1}{\sqrt{4}}+\dfrac{\sqrt{4}}{\sqrt{4}+1}=\dfrac{1}{2}+\dfrac{2}{3}=\dfrac{7}{6}\)

b.

\(B=\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}}=\dfrac{1}{3}\)

\(\Rightarrow3\sqrt{x}=x+\sqrt{x}\)

\(\Rightarrow x-2\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

c.

\(P=A:B=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}}{x+\sqrt{x}}\right)\)

\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

\(P>3\Rightarrow\dfrac{x+\sqrt{x}+1}{\sqrt{x}}>3\)

\(\Leftrightarrow x+\sqrt{x}+1>3\sqrt{x}\) (do \(\sqrt{x}>0\))

\(\Leftrightarrow x-2\sqrt{x}+1>0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2>0\)

\(\Leftrightarrow\sqrt{x}-1\ne0\)

\(\Rightarrow x\ne1\)

Kết hợp ĐKXĐ ta được: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)


Các câu hỏi tương tự
Nguyên Anh Phạm
Xem chi tiết
MINH KHUE
Xem chi tiết
olivouz____ha
Xem chi tiết
Bao Gia
Xem chi tiết
Bao Gia
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Kim Taewon
Xem chi tiết
Trang Đặng
Xem chi tiết
Trâm
Xem chi tiết