16c:
ĐKXĐ: \(x>=3\)
\(\sqrt{x^2-9}+6=3\sqrt{x+3}+\sqrt{x-3}\)
Đặt \(\sqrt{x-3}=a\left(a>=0\right);\sqrt{x+3}=b\left(b>=0\right)\)
Phương trình sẽ trở thành:
ab+6=3b+a
=>\(ab-a-3b-6=0\)
=>\(\left(ab-3b\right)-a+3-9=0\)
=>\(b\left(a-3\right)-\left(a-3\right)=9\)
=>\(\left(a-3\right)\left(b-1\right)=9\)
=>\(\left(a-3\right)\left(b-1\right)=1\cdot9=9\cdot1=\left(-1\right)\cdot\left(-9\right)=\left(-9\right)\cdot\left(-1\right)=3\cdot3=\left(-3\right)\cdot\left(-3\right)\)(1)
a>=0; b>=0
=>a-3>=-3; b-1>=-1(2)
Từ (1) và (2) suy ra
\(\left(a-3;b-1\right)\in\left\{\left(1;9\right);\left(9;1\right);\left(3;3\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(4;10\right);\left(12;2\right);\left(6;4\right)\right\}\)
TH1: a=4 và b=10
=>\(\left\{{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x+3}=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-3=16\\x+3=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=19\\x=97\end{matrix}\right.\)
=>Loại
TH2: a=12 và b=2
=>\(\left\{{}\begin{matrix}\sqrt{x-3}=12\\\sqrt{x+3}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-3=144\\x+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=147\\x=1\end{matrix}\right.\)
=>Loại
TH3: a=6 và b=4
=>\(\left\{{}\begin{matrix}\sqrt{x-3}=6\\\sqrt{x+3}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-3=36\\x+3=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=39\\x=13\end{matrix}\right.\)
=>Loại
vậy: Phương trình vô nghiệm
Phóng to cho tôi xem , bài của cậu chữ bé nhỏ tôi ko nhìn thấy gì cả?