\(a,\left[6.\left(-\dfrac{1}{3}\right)^2-3.\left(-\dfrac{1}{3}\right)+1\right]:\left(-\dfrac{1}{3}-1\right)\)
\(=\left[6.\dfrac{1}{9}-\dfrac{1.\left(-1\right)}{1}+1\right]:\left(-\dfrac{1}{3}-\dfrac{3}{3}\right)\)
\(=\left[\dfrac{2.1}{3}-\left(-1\right)+1\right]:\dfrac{-4}{3}\)
\(=\left[\dfrac{2}{3}+1+1\right].\dfrac{-3}{4}\)
\(=\left[\dfrac{2}{3}+\dfrac{3}{3}+\dfrac{3}{3}\right].\dfrac{-3}{4}\)
\(=\dfrac{8}{3}.\dfrac{-3}{4}\)
\(=\dfrac{2.\left(-1\right)}{1.1}\)
\(=-2\)
\(b,\dfrac{\left(\dfrac{2}{3}\right)^3.\left(-\dfrac{3}{4}\right)^2.\left(-1\right)^{2003}}{\left(\dfrac{2}{5}\right)^2.\left(-\dfrac{5}{12}\right)^3}\)
\(=\dfrac{\left(\dfrac{2}{3}\right)^3.\left(\dfrac{3}{4}\right)^2.\left(-1\right)}{\left(\dfrac{2}{5}\right)^2.\left(-\dfrac{5}{12}\right)^3}\)
\(=\dfrac{\left(\dfrac{2}{3}\right)^3.\left(\dfrac{3}{4}\right)^2}{\left(\dfrac{2}{5}\right)^2\left(\dfrac{5}{12}\right)^3}\)
\(=\dfrac{\dfrac{2^3}{3^3}.\dfrac{3^2}{4^2}}{\dfrac{2^2}{5^2}.\dfrac{5^3}{12^3}}\)
\(=\dfrac{\dfrac{2^3.3^2}{3^3.4^2}}{\dfrac{2^2.5^3}{5^2.12^3}}\)
\(=\dfrac{2^3.3^2.5^2.12^3}{3^3.4^2.2^2.5^3}\)
\(=\dfrac{2^3.3^2.5^2.\left(4.3\right)^3}{3^3.2^4.2^2.5^3}\)
\(=\dfrac{2^3.3^2.5^2.4^3.3^3}{3^3.2^6.5^3}\)
\(=\dfrac{2^3.3^2.5^2.\left(2^2\right)^3.3^3}{3^3.2^6.5^3}\)
\(=\dfrac{2^3.3^2.5^2.2^6.3^3}{3^3.2^6.5^3}\)
\(=\dfrac{2^9.3^5.5^2}{3^3.2^6.5^3}\)
\(=\dfrac{2^3.3^2}{5}\)
\(=\dfrac{8.9}{5}\)
\(=\dfrac{72}{5}\)