a) 2x + 3 = -5
<=> 2x = -5 - 3
<=> 2x = -8
<=> x = \(\dfrac{-8}{2}\)
<=> x = -4
Vậy S = \(\left\{-4\right\}\)
b) 3(x-5) + 7 = 0
<=> 3(x-5) = -7
<=> x-5 = \(\dfrac{-7}{3}\)
<=> x = \(\dfrac{-7}{3}\) + 5
<=> x = \(\dfrac{8}{3}\)
Vậy S = \(\left\{\dfrac{8}{3}\right\}\)
c) 5 - (x+2) = 3(x-1)
<=> 5 - x - 2 = 3x - 3
<=> - x - 3x = -3 + 2 -5
<=> -4x = -6
<=> x = \(\dfrac{-6}{-4}\)
<=> x = \(\dfrac{3}{2}\)
Vậy S = \(\left\{\dfrac{3}{2}\right\}\)
`2x + 3 = -5`
`2x = -5 - 3`
`2x = -8`
`x = -4`
Vậy `S = { -4}`
__________________
`3(x-5) + 7 = 0`
`3(x-5) = -7`
`x-5 = (-7)/3`
`x = (-7)/3 + 5`
`x= 8/3`
Vậy `S = { 8/3}`
___________________
`5-(x+2)=3.(x-1)`
`5 -x - 2 = 3x - 3`
` - x - 3x = -3 + 2 -5`
`-4x = -3 + 2 -5`
`-4x = -6`
`x = -6 : (-4)`
`x=3/2`
Vậy `S = { 3/2}`
\(a)2x+3=-5\)
\(\Leftrightarrow2x=-5-3\)
\(\Leftrightarrow2x=-8\)
\(\Leftrightarrow x=-8:2\)
\(\Leftrightarrow x=-4\)
\(b)3\left(x-5\right)+7=0\)
\(\Leftrightarrow3x-15+7=0\)
\(\Leftrightarrow3x-8=0\)
\(\Leftrightarrow3x=0+8\)
\(\Leftrightarrow3x=8\)
\(\Leftrightarrow x=8:3\)
\(\Leftrightarrow x=\dfrac{8}{3}\)
\(c)5-\left(x+2\right)=3\left(x-1\right)\)
\(\Leftrightarrow5-x-2=3\left(x-1\right)\)
\(\Leftrightarrow5-x-2=3x-3\)
\(\Leftrightarrow3-x=3x-3\)
\(\Leftrightarrow3-x-3x=-3\)
\(\Leftrightarrow-x-3x=-3-3\)
\(\Leftrightarrow-4x=-3-3\)
\(\Leftrightarrow-4x=-6\)
\(\Leftrightarrow-6:-4\)
\(\Leftrightarrow\dfrac{-6}{-4}=\dfrac{3}{2}\)
2x + 3 = -5
=> 2x = -5 - 3
=> 2x = -8
=> x = −82−82
=> x = -4
X = -4