a) \(\dfrac{2x+1}{x-2}=3\Rightarrow2x+1=3x-6\Rightarrow x=7\)
b) \(\dfrac{2x-3}{x+1}=\dfrac{1}{2}\Rightarrow4x-6=x+1\Rightarrow3x=7\Rightarrow x=\dfrac{7}{3}\)
a) \(\dfrac{2x+1}{x-2}=3\)
dkxd : x ≠ 2
MTC : x - 2
Quy đồng mẫu thức :
⇒ \(\dfrac{2x+1}{x-2}=\dfrac{3\left(x-2\right)}{x-2}\)
Suy ra : 2x + 1 = 3(x - 2)
\(\) \(\Leftrightarrow\) 2x + 1 = 3x - 6
\(\Leftrightarrow\) 2x + 1 - 3x + 6 = 0
\(\Leftrightarrow\) -1x + 7 = 0
\(\Leftrightarrow\) -1x = -7
\(\Leftrightarrow\) x = \(\dfrac{-7}{-1}=7\)
Vậy S = \(\left\{7\right\}\)
b) \(\dfrac{2x-3}{x+1}=\dfrac{1}{2}\)
dkxd : x ≠ -1
MTC : 2(x + 1)
Quy đồng mẫu thức :
⇒ \(\dfrac{2\left(2x-3\right)}{2\left(x+1\right)}=\dfrac{1\left(x+1\right)}{2\left(x+1\right)}\)
Suy ra : 2(2x - 3) = x + 1
\(\Leftrightarrow\) 4x - 6 - x - 1 = 0
\(\Leftrightarrow\) 3x - 7 = 0
\(\Leftrightarrow\) 3x = 7
\(\Leftrightarrow\) x = \(\dfrac{7}{3}\)
Vậy S = \(\left\{\dfrac{7}{3}\right\}\)
Chúc bạn học tốt
a: Ta có: \(\dfrac{2x+1}{x-2}=3\)
\(\Leftrightarrow3x-6=2x+1\)
hay x=7
b: Ta có: \(\dfrac{2x-3}{x+1}=\dfrac{1}{2}\)
\(\Leftrightarrow4x-6=x+1\)
\(\Leftrightarrow3x=7\)
hay \(x=\dfrac{7}{3}\)