Giải các phương trình có chứa ẩn ở mẫu sau:
a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\)
b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\)
d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\)
f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\)
g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\)
h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)
i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\)
j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\)
l, \(\dfrac{2}{x+1}-\dfrac{1}{xx-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
m, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
n, \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
o, \(\dfrac{x-2}{x+2}+\dfrac{3}{x-2}=\dfrac{x^2-11}{x^2-4}\)
p, \(\dfrac{x+4}{x+1}+\dfrac{x}{x-1}=\dfrac{2x^2}{x^2-1}\)
z, \(\dfrac{2x}{x-1}+\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}\)
q, \(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)
r, \(\dfrac{1}{x-3}+2=\dfrac{5}{x-1}+x\)
s, \(\dfrac{2}{x^2+4x-21}=\dfrac{3}{x-3}\)