-5(2x-1)(4x+3)<0
=>(2x-1)(4x+3)>0
TH1: \(\left\{{}\begin{matrix}2x-1>0\\4x+3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>-\dfrac{3}{4}\end{matrix}\right.\)
=>\(x>\dfrac{1}{2}\)
TH2: \(\left\{{}\begin{matrix}2x-1< 0\\4x+3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x< -\dfrac{3}{4}\end{matrix}\right.\)
=>\(x< -\dfrac{3}{4}\)
\(-5\left(2x-1\right)\left(4x+3\right)< 0\)
\(\Leftrightarrow\left(2x-1\right)\left(4x+3\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1>0\\4x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1< 0\\4x+3< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x>1\\4x>-3\end{matrix}\right.\\\left\{{}\begin{matrix}2x< 1\\4x< -3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>-\dfrac{3}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x< -\dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{2}\\x< -\dfrac{3}{4}\end{matrix}\right.\)
Vậy..