\(A=\sqrt{m^2+2m+1}+\sqrt{m^2-8m+16}\)
\(=\sqrt{\left(m+1\right)^2}+\sqrt{\left(m-4\right)^2}\)
\(=\left|m+1\right|+\left|m-4\right|\)
\(=\left|m+1\right|+\left|4-m\right|>=\left|m+1+4-m\right|=5\)
=>Amin=5
\(A=\sqrt{m^2+2m+1}+\sqrt{m^2-8m+16}\)
\(=\sqrt{\left(m+1\right)^2}+\sqrt{\left(m-4\right)^2}\)
\(=\left|m+1\right|+\left|m-4\right|\)
\(=\left|m+1\right|+\left|4-m\right|>=\left|m+1+4-m\right|=5\)
=>Amin=5
Gọi M là giá trị nhỏ nhất của \(\dfrac{\sqrt{x}+1}{\sqrt{x}+4}\) và N là giá trị lớn nhất của \(\dfrac{\sqrt{x+5}}{\sqrt{x}+2}\) biểu thức nào dưới đây đúng?vì sao?
A.M+3N=2 B.M-2N=1 C.2M+N=3 D.2N+M=3
Tìm giá trị nhỏ nhất của biểu thức A = m 2 + 2 m + 1 + m 2 - 8 m + 16
A. 2
B. 9
C. 5
D. 10
Giúp tui.
Cho biểu thức: \(M=x-\dfrac{2x-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x\sqrt{x+1}}{x-\sqrt{x}+1}+1\)
a. Rút gọn biểu thức M.
b. Tính giá trị nhỏ nhất của biểu thức M
Cho biểu thức M=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn biểu thức M
b) Tìm giá trị của x để biểu thức M đạt giá trị nhỏ nhất
1) a) Tính giá trị của biểu thức \(\sqrt{\left(\sqrt{3}-2\right)^2}\)+\(\sqrt{3}\)
b) Tìm các giá trị của tham số m để hai đường thẳng (d):y=(m+2).x-m (m≠-2) và (d'):y = -2x-2m+1 cắt nhau.
c) Tìm hệ số góc của đường thẳng (d):y=(2m-3)x+m ( với m≠\(\dfrac{3}{2}\)) biết (d) đi qua điểm A (3;-1)
1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).
2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(a-b\right)\left(a+b-1\right)\).
3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).
1)
i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.
ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).
2)
i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .
ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).
Tìm giá trị nhỏ nhất của biểu thức,
A=\(\sqrt{4x^2+4x+2}\)
B=\(\sqrt{2x^2-4x+5+1}\)
Tìm giá trị lớn nhất của biểu thức
M=\(-5+\sqrt{1+9x^2+6x}\)
Cho biểu thức:\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
1. Với giá trị nào của x thì biểu thức A xác định?
2.Tìm giá trị của x để A đạt giá trị nhỏ nhất.
3.Tìm các giá trị nguyên của x để A có giá trị nguyên.
Bài 1: Rút gọn biểu thức \(A=\sqrt{3+\sqrt{13+\sqrt{48}}}\)
Bài 2: Giá trị lớn nhất của \(y=\sqrt{16-x^2}\)
Bài 3: Giá trị nhỏ nhất của \(y=2+\sqrt{2x^2-4x+5}\)