Đồ thị của hàm số đã cho cắt trục hoành tại điểm có tọa độ ( 1;0 ). Khi đó
S = ∫ - 1 0 x + 1 x - 2 d x = ∫ - 1 0 x + 1 x - 2 d x = ∫ - 0 1 + 3 x - 2 d x = x + 3 ln x - 2 - 1 0 = 3 ln 3 2 - 1
Suy ra a = b = 3; c = 2
Vậy a + b + c = 8
Đáp án A
Đồ thị của hàm số đã cho cắt trục hoành tại điểm có tọa độ ( 1;0 ). Khi đó
S = ∫ - 1 0 x + 1 x - 2 d x = ∫ - 1 0 x + 1 x - 2 d x = ∫ - 0 1 + 3 x - 2 d x = x + 3 ln x - 2 - 1 0 = 3 ln 3 2 - 1
Suy ra a = b = 3; c = 2
Vậy a + b + c = 8
Đáp án A
Cho hàm số y = f(x) liên tục trên đoạn [a;b] và cắt trục hoành tại điểm x = c (a<c<b) (như hình vẽ bên). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và hai đường thẳng x = a; x = b. Mệnh đề nào dưới đây đúng ?
A. S = ∫ a c f ( x ) d x - ∫ c b f ( x ) d x
B. S = - ∫ a c f ( x ) d x + ∫ c b f ( x ) d x
C. S = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x
D. S = ∫ a b f ( x ) d x
Cho hàm số y = f ( x ) liên tục trên đoạn [a;b] có đồ thị như hình bên và c ∈ a ; b . Gọi S là diện tích của hình phẳng (H) giới hạn bởi đồ thị hàm số y = f ( x ) và các đường thẳng y = 0 , x = a , x = b . . Mệnh đề nào sau đây sai?
A. S = ∫ a c f x d x + ∫ c b f x d x
B. S = ∫ a c f x d x − ∫ c b f x d x
C. S = ∫ a b f x d x
D. S = ∫ a c f x d x + ∫ b c f x d x
Cho hai số thực dương a, b khác 1 và đồ thị của các hàm số y = log a x , y = log b x như hình vẽ bên. Gọi d là đường thẳng song song với trục Oy và cắt trục hoành tại điểm A có hoành độ x=k(k>1) Gọi S1 là diện tích hình phẳng giới hạn bởi y = log a x , d và trục hoành; S2 là diện tích hình phẳng giới hạn bởi y = log b x , d và trục hoành. Biết S1 = 4S2. Mệnh đề nào sau đây đúng ?
A. b = a 4
B. a = b 4
C. b = a 4 ln 2
D. a = b 4 ln 2
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y=f(x) và trục hoành như hình vẽ bên. Đặt a = ∫ - 1 1 f ( x ) d x , b = ∫ 1 2 f ( x ) d x . Mệnh đề nào sau đây đúng ?
A. S=a+b
B. S=a–b
C. S=-a+b
D. S=-a-b
Gọi S là diện tích của hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x 4 + x 2 , trục hoành, trục tung và đường thẳng x = 1 . Biết S = a 5 + b , a , b ∈ ℚ . Tính a + b
A. a + b = - 1
B. a + b = 1 2
C. a + b = 1 3
D. a + b = 13 3
Cho hàm số y = f x = a x 3 + b x 2 + c x + d a , b , c ∈ ℝ , a ≠ 0 có đồ thị (C). Biết rằng đồ thị (C) tiếp xúc với đường thẳng y = 4 tại điểm có hoành độ âm và đồ thị của hàm số y = f '(x) cho bởi hình vẽ dưới đây. Tính diện tích S của hình phẳng giới hạn bởi đồ thị (C) và trục hoành.
A. S = 9
B. S = 5 4
C. S = 21 4
D. S = 27 4
Cho hàm số y = f x liên tục trên đoạn a ; b . Gọi D là hình phẳng giới hạn bởi đồ thị C : y = f x , trục hoành và hai đường thẳng x = a , x = b (như hình vẽ dưới đây). Giả sử S D là diện tích của hình phẳng D. Chọn công thức đúng trong các phương án dưới đây
A. S D = − ∫ a 0 f x d x + ∫ 0 b f x d x .
B. S D = ∫ a 0 f x d x − ∫ 0 b f x d x .
C. S D = ∫ a 0 f x d x + ∫ 0 b f x d x .
D. S D = − ∫ a 0 f x d x − ∫ 0 b f x d x .
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành, đường thẳng x = a, x = b(như hình bên).
Hỏi cách tính S nào dưới đây đúng?
A. S = ∫ a b f x d x .
B. S = ∫ a c f x d x + ∫ c b f x d x .
C. S = − ∫ a c f x d x + ∫ c b f x d x .
D. S = ∫ a c f x d x + ∫ c b f x d x .
Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y=f(x), trục hoành, đường thẳng x=a, x=b. Hỏi khẳng định nào dưới đây là khẳng định đúng?
A. S = - ∫ a c f x d x + ∫ c b f x d x
B. S = ∫ a b f x d x
C. S = ∫ a c f x d x + ∫ c b f x d x
D. S = ∫ a c f x d x + ∫ c b f x d x