Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ILoveMath

Ghpt \(\left\{{}\begin{matrix}x^2+2y=xy+4\\x^2-x-3-x\sqrt{6-x}=\left(y-3\right)\sqrt{y-3}\end{matrix}\right.\)

Nguyễn Hoàng Minh
25 tháng 10 2021 lúc 15:22

\(ĐK:x\le6;y\ge3\\ \left\{{}\begin{matrix}x^2+2y=xy+4\left(1\right)\\x^2-x-3-x\sqrt{6-x}=\left(y-3\right)\sqrt{y-3}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2-4+2y-xy=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)-y\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-y+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=y-2\end{matrix}\right.\)

Từ đó thế vào PT(2)

Nguyễn Hoàng Minh
25 tháng 10 2021 lúc 16:07

Với \(x=y-2\Leftrightarrow x+2=y\)

\(\left(2\right)\Leftrightarrow x^2-x+3-x\sqrt{6-x}=\left(x-1\right)\sqrt{x-1}\left(1\le x\le6\right)\\ \Leftrightarrow2x^2-2x+6-2x\sqrt{6-x}=2\left(x-1\right)\sqrt{x-1}\\ \Leftrightarrow\left(x-\sqrt{6-x}\right)^2+x\left(x-1\right)=2\left(x-1\right)\sqrt{x-1}\\ \Leftrightarrow\left(x-\sqrt{6-x}\right)^2+\left(x-1\right)\left(x-2\sqrt{x-1}\right)=0\\ \Leftrightarrow\left(\dfrac{x^2-6+x}{x+\sqrt{6-x}}\right)^2+\dfrac{\left(x-1\right)\left(x^2-4x+4\right)}{x^2+2\sqrt{x-1}}=0\\ \Leftrightarrow\left[\dfrac{\left(x-2\right)\left(x+3\right)}{x+\sqrt{6-x}}\right]^2+\dfrac{\left(x-1\right)\left(x-2\right)^2}{x^2+2\sqrt{x-1}}=0\\ \Leftrightarrow\left(x-2\right)^2\left[\left(\dfrac{x+3}{x+\sqrt{6-x}}\right)^2+\dfrac{x-1}{x^2+2\sqrt{x-1}}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\left(\dfrac{x+3}{x+\sqrt{6-x}}\right)^2+\dfrac{x-1}{x^2+2\sqrt{x-1}}=0\left(1\right)\end{matrix}\right.\)

Dễ thấy \(\left(1\right)>0\) với \(x\ge1\)

Do đó \(x=2\Leftrightarrow y=4\)

Vậy HPT có nghiệm \(\left(x;y\right)=\left(2;4\right)\)


Các câu hỏi tương tự
ILoveMath
Xem chi tiết
Thục Quyên
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
Anime
Xem chi tiết
Anime
Xem chi tiết