Giải hệ phương trình sau:
\(\hept{\begin{cases}\left(x+y\right)^2=9\\x^2+y^2=5\end{cases}}\)
EZ:))
Chuyên mục , học giỏi mỗi ngày
2 hằng đằng thức bá đạo của lớp 9 " có thể sử dụng cho lớp 8 , 7 "
" hằng đẳng thức 1 " \(A^2=B\Leftrightarrow A=\pm\sqrt{b}\)
VD : \(\hept{\begin{cases}\left(x+2\right)^2=4\\x+2=2\\x+2=-2\end{cases}\Leftrightarrow}x=0,-4\Leftrightarrow\hept{\begin{cases}\left(-4+2\right)^2=4\\\left(0+2\right)^2=4\end{cases}}\)
hằng đẳng thức 2 " \(\sqrt{A^2}=|a|\)
Muốn biết nó tại sao thì hãy nhìn lại hằng đằng thức 1
Vd : \(|2x+1|=|x+2|\)
\(\sqrt{\left(2x+1\right)^2}=\sqrt{\left(x+2\right)^2}\)
\(\left(2x+1\right)^2=\left(x+2\right)^2\) " bình phương 2 vế phá căn
\(\left(2x+1-\left(x+2\right)\right)\left(2x+1+\left(x+2\right)\right)=0\) " hằng đẳng thức số 3"
\(\orbr{\begin{cases}2x+1-x-2\Leftrightarrow x=1\\2x+x+1+2\Leftrightarrow3x=-3\Leftrightarrow x=-1\end{cases}}\)
vậy là các ngươi có thể phá trị tuyệt đối mà ko cần xét các TH
lũ con người các ngươi hãy biết ơn chúa pain okay
Giải HPT:\(\begin{cases}x+xy+y=2+3\sqrt{2}\left(1\right)\\x^2+y^2=6\end{cases}\left(2\right)\)
@Vanan Vuong : Tìm m để pt (x-7)(x-6)(x+2)(x+3) = m có 4 nghiệm phân biệt t/m \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)
\(Pt:\left(x-7\right)\left(x-6\right)\left(x+2\right)\left(x+3\right)=m\)
\(\Leftrightarrow\left[\left(x-7\right)\left(x+3\right)\right]\left[\left(x-6\right)\left(x+2\right)\right]=m\)
\(\Leftrightarrow\left(x^2-4x-21\right)\left(x^2-4x-12\right)=m\)(1)
Đặt \(\left(x-2\right)^2=a\left(a\ge0\right)\)
\(\Rightarrow a=x^2-4x+4\)
Như vậy , vs mỗi giá trị của a , ta tìm được nhiều nhất 2 giá trị của x
\(Pt\left(1\right)\Leftrightarrow\left(a-26\right)\left(a-16\right)=m\)
\(\Leftrightarrow a^2-42a+416=m\)
\(\Leftrightarrow a^2-42a+416-m=0\)(2)
Để pt ban đầu có 4 nghiệm phân biệt thì pt (2) phải có 2 nghiệm dương phân biệt
Tức là \(\hept{\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}441-416+m>0\\42>0\left(Luonđung\right)\\416-m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-25\\m< 416\end{cases}}\Leftrightarrow-25< m< 416\)
Khi đó theo hệ thức Vi-ét \(\hept{\begin{cases}a_1+a_2=42\\a_1a_2=416-m\end{cases}}\)
Với giá trị của m vừa tìm đc ở trên thì mỗi giá trị a1 và a2 sẽ nhận 2 giá trị của x
Giả sử a1 nhận 2 nghiệm x1 và x2 còn a2 nhận 2 nghiệm x3 và x4 (đoạn này ko hiểu ib nhá)
*Xét a1 nhận x1 và x2
Khi đó phương trình \(a_1=x^2-4x+4\) sẽ nhận 2 nghiệm x1 và x2
\(pt\Leftrightarrow x^2-4x+4-a_1=0\)(Đoạn này ko cần Delta nữa vì mình đã giả sử có nghiệm rồi)
Theo hệ thức Vi-ét \(\)\(\hept{\begin{cases}x_1+x_2=4\\x_1x_2=4-a_1\end{cases}}\)
*Xét a2 nhận x3 và x4
Tương tự trường hợp trên ta cũng đc \(\hept{\begin{cases}x_3+x_4=4\\x_3x_4=4-a_2\end{cases}}\)
Ta có \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)
\(\Leftrightarrow\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=4\)
\(\Leftrightarrow\frac{4}{4-a_1}+\frac{4}{4-a_2}=4\)
\(\Leftrightarrow\frac{1}{4-a_1}+\frac{1}{4-a_2}=1\)
\(\Leftrightarrow\frac{4-a_2+4-a_1}{\left(4-a_1\right)\left(4-a_2\right)}=1\)
\(\Leftrightarrow\frac{8-\left(a_1+a_2\right)}{16-4\left(a_1+a_2\right)+a_1a_2}=1\)
\(\Leftrightarrow\frac{8-42}{16-4.42+416-m}=1\)
\(\Leftrightarrow\frac{-34}{264-m}=1\)
\(\Leftrightarrow-34=264-m\)
\(\Leftrightarrow m=298\)(Thỏa mãn)
Tính toán có sai sót gì thì tự fix nhá :V
giải hệ \(\hept{\begin{cases}6x-y+z^2=3\\x^2-y^2-2z=-1\\6x^2-3y^2-y-2z^2=0\end{cases}\left(x,y,z\in R\right)}\)
cái này trong đề thi j đó ko nhớ tên
\(ab+bc+ca=1\)\(\Rightarrow\)\(\hept{\begin{cases}a+b+c\ge\sqrt{3}\\a^2+b^2+c^2\ge1\end{cases}}\)
\(\left(a-\frac{1}{\sqrt{3}}\right)^2\ge0\)\(\Leftrightarrow\)\(a\le\frac{\sqrt{3}}{2}a^2+\frac{\sqrt{3}}{6}\)
\(P=\Sigma\frac{a^2\left(1-2b\right)^2}{b\left(1-2b\right)}\ge\frac{\left(a+b+c-2\right)^2}{\left(a+b+c\right)-2\left(a^2+b^2+c^2\right)}\ge\frac{\left(a+b+c-2\right)^2}{\frac{\sqrt{3}-4}{2}\Sigma a^2+\frac{\sqrt{3}}{2}}\ge\sqrt{3}-2\)
Bt hè
1 ) giải các phương trình và hệ phương trình sau :
a) \(x^3+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}+7=0\)
b) \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
Đã bảo là liên hợp là ra mà đ tin hả Zũ ? -_-
\(x^3+\sqrt{\left(x+1\right)^3}=9x+8\left(x\ge-1\right)\)
\(\Leftrightarrow\left(x^3+1\right)+\left(x+1\right)\sqrt{x+1}-9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1+\sqrt{x+1}-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(Tm\right)\\x^2-x+\sqrt{x+1}-8=0\left(1\right)\end{cases}}\)
Giải \(\left(1\right)\Leftrightarrow\left(x^2-3x\right)+\left(2x-6\right)+\left(\sqrt{x+1}-2\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)+\frac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2+\frac{1}{\sqrt{x+1}+2}\right)=0\)
Vì x > -1 nên dễ thấy cái ngoặc to > 0
Do đó x = 3
Vậy có 2 nghiệm -1 và 3 (nghiệm thứ 3 nào nữa nhỉ ? -,-'' )
@ Mình thử thôi nha, ko chắc đâu!
\(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
Đặt \(\sqrt[3]{3x+1}=a;\sqrt[3]{5-x}=b;\sqrt[3]{2x-9}=c;\sqrt[3]{4x-3}=d\)
\(\Rightarrow a^3+b^3+c^3=4x-3=d^3\)
Kết hợp đề bài ta có hệ:\(\hept{\begin{cases}a+b+c=d\left(1\right)\\a^3+b^3+c^3=d^3\left(2\right)\end{cases}}\)
Thay (1) vô (2) có ngay: \(\left(a+b+c\right)^3=a^3+b^3+c^3\)
Hay \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Auto làm nốt:D