a, Áp dụng định lý Pi-ta-go vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\\ \Rightarrow AC=12\left(cm\right)\)
Áp dụng định lý phân giác ta có:
\(\dfrac{CD}{AD}=\dfrac{BC}{AB}=\dfrac{20}{16}=\dfrac{5}{4}\Rightarrow\dfrac{CD}{5}=\dfrac{AD}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{CD}{5}=\dfrac{AD}{4}=\dfrac{CD+AD}{5+4}=\dfrac{AC}{9}=\dfrac{12}{9}=\dfrac{4}{3}\)
\(\dfrac{CD}{5}=\dfrac{4}{3}\Rightarrow CD=\dfrac{20}{3}\\ \dfrac{AD}{4}=\dfrac{4}{3}\Rightarrow AD=\dfrac{16}{3}\)
b,Xét ΔABD và ΔHCD có:
\(\widehat{DAB}=\widehat{CHD}\left(=90^o\right)\)
\(\widehat{CDH}=\widehat{ADB}\) (2 góc đối đỉnh)
\(\Rightarrow\Delta ABD\sim\Delta HCD\left(g.g\right)\)
c,Áp dụng định lý Pi-ta-go vào tam giác vuông ABD ta có:
\(AB^2+AD^2=BD^2\\ \Rightarrow BD=\dfrac{16\sqrt{10}}{3}\left(cm\right)\)
\(\dfrac{BD}{CD}=\dfrac{16\sqrt{10}}{3}:\dfrac{20}{3}=\dfrac{4\sqrt{10}}{5}\)
\(\Delta ABD\sim\Delta HCD\left(cmb\right)\)
\(\Rightarrow\dfrac{AD}{HD}=\dfrac{AB}{HC}=\dfrac{BD}{CD}=\dfrac{4\sqrt{10}}{5}\\ \Rightarrow\dfrac{\dfrac{16}{3}}{HD}=\dfrac{16}{HC}=\dfrac{4\sqrt{10}}{5}\\ \Rightarrow\left\{{}\begin{matrix}DH=\dfrac{2\sqrt{10}}{3}\left(cm\right)\\HC=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)
\(S_{HDC}=\dfrac{DH.HC}{2}=\dfrac{20}{3}\left(cm^2\right)\)