\(\alpha\in\left(-90;0\right)\Rightarrow\left\{{}\begin{matrix}sina< 0\\cosa>0\end{matrix}\right.\) \(\Rightarrow cosa=\sqrt{1-sin^2a}=\dfrac{3}{5}\)
\(cot\left(a+60^0\right)=\dfrac{cos\left(a+60^0\right)}{sin\left(a+60^0\right)}=\dfrac{cosa.cos60^0-sina.sin60^0}{sina.cos60^0+cosa.sin60^0}\)
\(=\dfrac{\dfrac{3}{5}.\dfrac{1}{2}-\left(-\dfrac{4}{5}\right).\dfrac{\sqrt{3}}{2}}{-\dfrac{4}{5}.\dfrac{1}{2}+\dfrac{3}{5}.\dfrac{\sqrt{3}}{2}}=...\)
\(sin\left(45^0-a\right)=sin45^0.cosa-cos45^0.sina=\dfrac{\sqrt{2}}{2}.\dfrac{3}{5}-\dfrac{\sqrt{2}}{2}.\left(-\dfrac{4}{5}\right)=...\)