Với \(x>0\):
\(D=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{x+\sqrt{x}}\\ =\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}:\dfrac{1}{\sqrt{x}+1}\\ =\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\\ =\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\\ \ge2+1=3\)
(Theo bất đẳng thức Cauchy)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=\dfrac{1}{\sqrt{x}}\Leftrightarrow x=1\)
Vậy \(D_{min}=3\) đạt được khi \(x=1\)