\(\Leftrightarrow\dfrac{\left(x+2\right)^2-\left(x-2\right)^2-4x^2}{x^2-4}=0\) \(\left(dk:x\ne\pm2\right)\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-4x^2=0\)
\(\Leftrightarrow-4x^2+8x=0\)
\(\Leftrightarrow-4x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=2\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{0\right\}\)