`[x+2016]/5-[x+2016]/3=x/2+1008`
`=>6(x+2016)-10(x+2016)=15x+30240`
`=>6x+12096-10x-20160=15x+30240`
`=>19x=-38304`
`=>x=-2016`
`[x+2016]/5-[x+2016]/3=x/2+1008`
`=>6(x+2016)-10(x+2016)=15x+30240`
`=>6x+12096-10x-20160=15x+30240`
`=>19x=-38304`
`=>x=-2016`
Bài 1 : Rút gọn
\(M=\dfrac{1^{2016}+2^{2016}+3^{2016}+...+10^{2016}}{2^{2016}+4^{2016}+6^{2016}+...+20^{2016}}\)
Bài 2 : Tính
\(N=\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right).\dfrac{1-3-5-7-...-9}{89}\)
\(P=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6-8^4.3^5}-\dfrac{5^{10}.7^3-25^5.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
Bài 3: Rút gọn
a) A = |2x + 4,6| - 2x + 15,4
b) B = |x + 7,2| - |x - 1,2|
c) C = 8,5x - 19, 5 - |1,5x + 4,5|
d) D = 8,5 + x - |8,5 - x|
Bài 4 : Tìm x và y \(\in\) N.Biết 25 - y2 = 8(x - 2009)2
Bài 5 ; Cho :
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)
So sánh phân số sau vs \(\dfrac{-1}{2}\)
\(\dfrac{x+1}{2019}+\dfrac{x+2}{2018}=\dfrac{x+3}{2017}+\dfrac{x+4}{2016}\)
Tìm x biết : \(\dfrac{x+4}{2014}\)+\(\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
\(A=\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}+1\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}\right)-\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}+1\right)\)
cho bx^2=ay^2 va x^2+y^2=1 cm x^2016/a^1008+y^2016/b^1008=2/(a+b)^1008
Tìm x, biết
a)\(\dfrac{1}{2}\)x\(x\)-\(\dfrac{7}{3}\)=\(\dfrac{-5}{6}\)+\(\dfrac{3}{4}\)x\(x\)
b)\(\dfrac{4}{5}\)x\(x\)-\(\dfrac{6}{5}\)=\(\dfrac{1}{2}\)+\(\dfrac{3}{2}\)x\(x\)
c)\(\dfrac{2}{5}\)x(3x\(x\)+\(\dfrac{3}{4}\))=\(1\dfrac{1}{5}\)-\(\dfrac{1}{3}\)x\(x\)
d)2x(3x\(x \)+\(\dfrac{3}{4}\))+\(\dfrac{4}{5}\)=\(\dfrac{1}{2}\)-2x\(x\)
Tìm x, biết:
a) \(\dfrac{3}{7}\)x - \(\dfrac{2}{3}\)x = \(\dfrac{10}{21}\)
b) \(\dfrac{7}{35}\) : (x - \(\dfrac{1}{3}\)) = \(-\dfrac{2}{25}\)
c) 3.(x - \(\dfrac{1}{2}\)) - 5. (x + \(\dfrac{3}{5}\)) = -x + \(\dfrac{1}{5}\)
Biết rằng \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_{2016}}{a_{2017}}.\) Chứng minh rằng: \(\dfrac{a_1}{a_{2017}}=\left(\dfrac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+...+a_{2017}}\right)^{2016}\)
Baifi 1: Tính:
P= \(\dfrac{3^{2016}-6^{2016}+9^{2016}-12^{2016}+15^{2016}-18^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)