\(=\dfrac{x^2+4x+3+x^2-4x+3+2x-2x^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\)
\(=\dfrac{x^2+4x+3+x^2-4x+3+2x-2x^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\)
Giai phương trình :
a)\(\dfrac{2x-1}{3}-x=\dfrac{x+3}{4}+2\)
b)\(x^2-4+\left(x-9\right)\left(x-2\right)=0\)
c)\(\dfrac{x-1}{x-3}-\dfrac{1}{x+3}=\dfrac{3x+3}{x^2-9}\)
Bài 1: Tính:
a)\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}-\dfrac{2y^2}{y^2-x^2}\)
b)\(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3}-\dfrac{x}{3x+9}\right)\)
Bài 2: Tìm x:
a)2x\(^3\)-50x=0 b)\(x^3+x^2+x+a\) chia hết cho x+1
Bài 3: Cho △MNP vuông tại N, biết MN = 6cm, NP = 8cm. đường cao NH, qua H kẻ HC⊥MN, HD⊥NP
a) Chứng minh HDNC là hình chữ nhật.
b) Tính CD
c) Tính diện tích △NMH
Cho biểu thứ :\(P:\left(\dfrac{x-1}{x-3}+\dfrac{2}{x-3}+\dfrac{x^2+3}{9-x^2}\right):\left(\dfrac{2x-1}{2x+1-1}\right)\)
a) Rút gọn biểu thức P
b) Tính giá trị của P biết \(\left|x+1\right|=\dfrac{1}{2}\)
c) Tìm x để \(P=\dfrac{x}{2}\)
d) Tìm giá trị nguyen của x để P có giá trị nguyên
3x -2(x-3) =6
\(\dfrac{2x-1}{3}\)-x-1=\(\dfrac{x+2}{4}\)
(\(\left(x-1\right)^2\)-9\(\left(x+1\right)^2\)=0
\(\dfrac{x-4}{x-1}\)+\(\dfrac{x+4}{x+1}\)=2
P=\(\left(\dfrac{3\left(x+2\right)}{2x^2+8}-\dfrac{2x^2-x-10}{\left(x+1\right)\left[\left(x+1\right)^2-2x\right]}\right):\left(\dfrac{5}{x^2+1}+\dfrac{3}{2\left(x+1\right)}-\dfrac{3}{x-1}\right)\cdot\dfrac{2}{x-1}\)
a) rút gọn P
b)tìm tất cả các giá trị nguyên của x để P có giá trị là bội của 4
giải các phương trình sau
1, \(\dfrac{2x}{x-1}-\dfrac{3}{x+3}=\dfrac{x^2+3}{\left(x+1\right)\left(x-3\right)}\)
2,\(\dfrac{x}{x-3}-\dfrac{1}{x+2}=\dfrac{4x+3}{\left(x-3\right)\left(x+2\right)}\)
rút gọn
\(\dfrac{x^2}{x^2-1}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\)
\(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\)
\(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\)
Rút gọn:
a) \(\dfrac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}\)
b) \(\dfrac{6x^2y^2}{8xy^5}\)
c) \(\dfrac{3x\left(1-x\right)}{2\left(x-1\right)}\)
d) \(\dfrac{9-\left(x+5\right)^2}{x^2+4x+4}\)
e) \(\dfrac{x^2-2x+1}{x^2-1}\)
f) \(\dfrac{8x-4}{8x^3-1}\)
g) \(\dfrac{x^2+5x+6}{x^2+4x+4}\)
k) \(\dfrac{20x^2-45}{\left(2x+3\right)^2}\)
giải phương trình:
a,x(x+3)-(2x-1).(x+30)=0
b,x(x-3)-5(x-3)=0
c,\(\dfrac{1}{x+1}+\dfrac{5}{x-2}=\dfrac{3x}{\left(x+1\right)\left(x-2\right)}\)
d,\(\dfrac{x-1}{x+1}+\dfrac{x+1}{x-1}=\dfrac{4-2x^2}{\left(1-x^2\right)}\)