\(\dfrac{1}{3\left(1+\sqrt{2}\right)}+\dfrac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\dfrac{1}{97\left(\sqrt{48}+\sqrt{49}\right)}< \dfrac{7}{3}\)
a) A=\(\left(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\dfrac{\sqrt{15}-\sqrt{35}}{\sqrt{3}-\sqrt{7}}\right).\left(\sqrt{2}+\sqrt{5}\right)\)
b) B=\(\dfrac{12}{3+\sqrt{3}}-\dfrac{6}{\sqrt{3}}+\dfrac{\sqrt{27}-3\sqrt{2}}{\sqrt{3}.\sqrt{2}}\)
c)C=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)(x>0,x≠1,x≠4)
chứng minh rằng:\(\dfrac{1}{3\left(\sqrt{1}+\sqrt{2}\right)}+\dfrac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\dfrac{1}{97\left(\sqrt{48}+\sqrt{49}\right)}< \dfrac{3}{7}\)
Tính:
1) \(\dfrac{1}{3-2\sqrt{2}}+\dfrac{1}{2+\sqrt{5}}\)
2) \(\dfrac{1}{3-2\sqrt{2}}-\dfrac{1}{3+2\sqrt{2}}\)
3) \(\dfrac{1}{\sqrt{5}-\sqrt{7}}+\dfrac{2}{1-\sqrt{7}}\)
4) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\)
5) \(-\dfrac{1}{\sqrt{2}-\sqrt{3}}\)\(-\dfrac{3}{\sqrt{18}+2\sqrt{3}}\)
THỰC HIỆN PHÉP TÍNH
1,\(\sqrt{3+\sqrt{5}}.\sqrt{2}\)
2,\(\sqrt{3-\sqrt{5}.\sqrt{8}}\)
3,\((\sqrt{\dfrac{3}{4}}-\sqrt{3}+5\sqrt{\dfrac{4}{3})}.\sqrt{12}\)
4,\((\sqrt{\dfrac{1}{7}}-\sqrt{\dfrac{16}{7}}+\sqrt{7}):\sqrt{7}\)
5, \(\sqrt{36-12\sqrt{5}}:\sqrt{6}\)
6,\(\sqrt{3-\sqrt{5}:}\sqrt{2}\)
Rút gọn các biểu thức sau:
a \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
b \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
c \(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
d \(\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)
Rút gọn các biểu thức sau:
a. \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}\) - \(\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
b.\(\dfrac{1}{4-3\sqrt{2}}\) - \(\dfrac{1}{4+3\sqrt{2}}\)
c.\(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right)\): \(\sqrt{28}\)
d.\(\dfrac{3}{\sqrt{6}-\sqrt{3}}\)+\(\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
B1. ko sử dụng máy tính, rút gọn
\(D=\dfrac{1}{2}\sqrt{48}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
\(E=\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}\)
\(F=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
B2.
\(G=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
so sánh G với 1
B3. giải pt
\(\left\{{}\begin{matrix}\left(x-3\right)\left(2y+5\right)=\left(2x+7\right)\left(y-1\right)\\\left(4x+1\right)\left(3y-6\right)=\left(6x-1\right)\left(2y+3\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
\(\dfrac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}\)+\(\dfrac{8}{1-\sqrt{5}}\)
\(\dfrac{5+\sqrt{7}}{9-\sqrt{23+8\sqrt{7}}}\)+\(\dfrac{5-\sqrt{7}}{2+\sqrt{16+6\sqrt{7}}}\)
\(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}\)+\(\dfrac{1}{\sqrt{2}-\sqrt{2+\sqrt{3}}}\)
1/ Rut gon bieu thuc sau:
a) \(\sqrt{12-2\sqrt{35}}+\sqrt{7-2\sqrt{10}}-\sqrt{\sqrt{49}}\)
b) \(\frac{\sqrt{7}-5}{2}-\frac{6}{\sqrt{7}-2}+\frac{1}{3+\sqrt{7}}+\frac{3}{5+2\sqrt{7}}\)