Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = 2 x 3 - 3 ( m + 1 ) x 2 + 6 m x có hai điểm cực trị là A và B sao cho đường thẳng AB vuông góc với đường thẳng d : y = x + 2 Số phần tử của S là
A. 0
B. 1
C. 2
D. 3
Để đồ thị hàm số y = - x 4 - ( m - 3 ) x + 2 m + 1 có điểm cực đại mà không có điểm cực tiểu thì tất cả các giá trị thực của tham số m là
A. m ≤ 3
B. m < 3
C. m ≥ 3
D. m > 3
Để đồ thị hàm số y = - x 4 - ( m - 3 ) x 2 + m + 1 có điểm cực đại mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là:
A. m ≥ 3
B. m > 3.
C. m ≤ 3
D. m < 3
Cho hàm số y=f(x) có đồ thị như hình vẽ bên dưới: Tìm tất cả các giá trị của tham số m để đồ thị hàm số h ( x ) = f 2 ( x ) + f ( x ) + m có đúng 3 điểm cực trị.
A. m ≤ 1
B. m > 1 4
C.m<1
D. m ≥ 1 4
Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên. Tất cả giá trị thực của tham số m để hàm số y = f x + m có 3 điểm cực trị?
A. 1 ≤ m ≤ 3
B. m = -1 hoặc m = 3
C. m ≤ - 1 h o ặ c m ≥ 3
D. m ≤ - 3 hoặc m ≥ 1
Cho hàm số bậc ba y=f(x) có đồ thị như hình vẽ bên. Tất cả giá trị thực của tham số m để hàm số y = f ( x - 1 ) - m - 1 có 3 điểm cực trị?
A. -1<m<5
B. - 1 ≤ m ≤ 5
C. m ≥ - 1 hoặc m ≤ - 5
D. m>-1 hoặc m<-5
Cho hàm số bậc ba y = f(x) có đồ thị như hình bên. Tất cả các giá trị của tham số m để hàm số y = |f(x)+m| có 3 điểm cực trị là:
A. m ≤ -1 hoặc m ≥ 3
B. m ≤ -3 hoặc m ≥ 1
C. m = -1 hoặc m = 3
D. 1 ≤ m ≤ 3
Cho hàm số y = x 3 - 3 m x 2 + 2 ( m 2 - 1 ) x - m 3 - m (m là tham số). Gọi A, B là hai điểm cực trị của đồ thị hàm số và I(2;-2). Tổng tất cả các giá trị của m để ba điểm I, A, B tạo thành tam giác nội tiếp đường tròn có bán kính bằng 5 là
A. 20 17
B. - 2 17
C. 4 17
D. 14 17
Cho hàm số y = x 3 + ( m + 3 ) x 2 - ( 2 m + 9 ) x + m + 6 có đồ thị (C). Tìm tất cả các giá trị thực của tham số m để (C) có hai điểm cực trị và khoảng cách từ gốc toạ độ O đến đường thẳng nối hai điểm cực trị là lớn nhất.
A. m = - 6 ± 3 2 2
B. m = - 3 ± 3 2 2
C. m = - 3 ± 6 2
D. m = - 6 ± 6 2