ĐKXĐ: x>=0; x<>1
\(H=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\)
\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)
\(=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{1}\cdot\dfrac{\sqrt{x}-1}{2}\)
\(=\dfrac{-2\sqrt{x}}{2}\cdot\left(\sqrt{x}-1\right)=-\sqrt{x}\left(\sqrt{x}-1\right)\)
ĐKXĐ: x>0; x<>1
\(A=\left(\dfrac{1}{-x+\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{\left(1-\sqrt{x}\right)^2}\)
\(=\left(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}-1}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\dfrac{-1-\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\sqrt{x}}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\dfrac{-\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{-\sqrt{x}+1}{\sqrt{x}}\)
ĐKXĐ: x>0; x<>1
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\sqrt{x}-1}{1}\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{x-1}{\sqrt{x}}\)
ĐKXĐ: x>=0; x<>1
\(C=\left(\dfrac{3}{x-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}-1}\)
\(=\left(\dfrac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{\sqrt{x}-1}{1}\)
\(=\dfrac{3+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)
ĐKXĐ: x>=0; x<>1
\(D=\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}\)
\(=\dfrac{x\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{x-1}{\sqrt{x}+1}\)
\(=\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}+x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)



mọi người giúp mik bài 4 câu a vs ạ
