Cứ giải bất đẳng thức bình thường sẽ tìm được n = 4
( n - 3 )2 - ( n - 4 )( n + 4 ) < 3
<=> n2 - 6n + 9 - n2 + 16 < 3
<=> -6n + 25 < 3
<=> -6n < -22
<=> n > 11/3
Vì n nguyên n ∈ { 4 ; 5 ; 6 ; ....... } *ối giồi ôi còn nhiều lắm =))*
Cứ giải bất đẳng thức bình thường sẽ tìm được n = 4
( n - 3 )2 - ( n - 4 )( n + 4 ) < 3
<=> n2 - 6n + 9 - n2 + 16 < 3
<=> -6n + 25 < 3
<=> -6n < -22
<=> n > 11/3
Vì n nguyên n ∈ { 4 ; 5 ; 6 ; ....... } *ối giồi ôi còn nhiều lắm =))*
Tìm số nguyên dương n lớn nhất để bất đẳng thức sau thỏa mãn
\(\frac{1}{\sqrt[n]{\left(na+b+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+nb+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+b+nc\right)^4}}\le\frac{3}{16}\)
trong đó a,b,c là các số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\)
CMR với mọi số nguyên dương n, ta luôn có đẳng thức sau :
\(2^2+4^2+...+\left(2n\right)^2=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\)
Tìm n nhỏ nhất để có bất đẳng thức:
\((a^2+b^2+c^2)^2\le n\left(a^4+b^4+c^4\right)\)
Chứng minh bất đẳng thức
\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)>\frac{1}{2}\) \(\left(n\varepsilonℕ^∗,n\ge2\right)\)
a) cho a,b,c thỏa mãn a > c và b > c > 0. tìm số n nhỏ nhất để có bất đẳng thức sau :
\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le n\sqrt{ab}\)
b) CMR với mọi số nguyên dương n
\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)
Tìm mọi số nguyên n thỏa mãn \(\left(n+5\right)^2=\left(4\left(n-2\right)\right)^3\)
Tìm mọi số nguyên n thỏa mãn \(\left(n+5\right)^2=\left[4\left(n-2\right)\right]^3\)
Chứng minh bất đẳng thức sau với mọi n nguyên dương:
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}< \sqrt[3]{n^2}-\sqrt[3]{\left(n-1\right)^2}\)
Chứng minh bất đẳng thức sau với mọi n nguyên dương:
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}< \sqrt[3]{n^2}-\sqrt[3]{\left(n-1\right)^2}\)