Đáp án B
Để hàm số bậc bốn y = x 4 + b x 2 + c có 3 cực trị thì phương trình y ' = 0 có 3 nghiệm phân biệt. Và khi hàm số trên có ba cực trị thì ba cực trị đó luôn tạo thành một tam giác cân.
Cách giải: Ta có: y ' = 4 x 3 − 4 m x = 0 ⇔ x = 0 x 2 = m
Để phương trình y ' = 0 có 3 nghiệm phân biệt ⇔ m > 0
⇒ y ' = 0 ⇔ x = 0 ⇒ y = 2 m 2 − m ⇒ A 0 ; 2 m 2 − m x = m ⇒ y = m 2 − m ⇒ B m ; m 2 − m x = − m ⇒ y = m 2 − m ⇒ C − m ; m 2 − m
Ta có tam giác ABC luôn là tam giác cân tại A nên để ABC là tam giác vuông cân thì ta cần thêm điều kiện tam giác ABC vuông tại A ⇒ A B → . A C → = 0
A B → = m ; − m 2 ; A C → = − m ; − m 2
⇒ − m + m 4 = 0 ⇔ m m 3 − 1 = 0 ⇔ m = 0 k t m m = 1 t m
Vậy m=1