ta có BĐT cần chứng minh
<=>\(2a^8+2b^8\ge a^8+b^8+a^3b^5+a^5b^3\Leftrightarrow a^8+b^8\ge a^3b^5+a^5b^3\)
Áp dụng bđt cô-si, ta có \(a^8+a^8+a^8+b^8+b^8+b^8+b^8+b^8\ge8a^3b^5\)
tương tự, ta có \(5.a^8+3b^8\ge8a^5b^3\)
+ 2 vế của 2 bđt , ta có \(8\left(a^8+b^8\right)\ge8\left(a^3b^5+a^5b^3\right)\Rightarrow a^8+b^8\ge a^3b^5+a^5b^3\)
=> BĐT cần phải chứng minh luôn đúng
dấu = xảy ra <=> a=b>0
^_^