Cho a=\(\left(2+\sqrt{3}\right)^2\)b=\(\left(2-\sqrt{3}\right)^2\)
a) Lập phương trình bậc hai có hai nghiệm là a,b
b) CMR: S=a3+b3 là 1 số nguyên
a) Cho đa thức f(x) với hệ số nguyên biết f(x) có giá trị bằng 2017 tại 5 giá trị nguyên khác nhau của x. CMR: f(x) không thể nhận giá trị 2007 với mọi số nguyên x.
b) Tìm số nguyên tố p sao cho 2p+1 là lập phương của một số tự nhiên
Giả sử a,b thuộc Q,a,b>0 và a,b không là bình phương của 1 số hữu tỉ nào.
CMR: Nếu r và s là 2 số hữu tỉ sao cho t= rcăna + scănb là một số hữu tỉ thì t =0
Cho S là một tập các số nguyên sao cho :
a) Tồn tại a,b thuộc S với gcd(a,b) = gcd(a-2,b-2) = 1
b) Nếu x,y là hai phần tử của S( có thể bằng nhau ) thì x2 - y cũng thuộc S
CMR S là tập tất cả các số nguyên
phân tích số 16032018 thành tổng của 1 số số hạng nguyên dương. Gọi S là tổng các lập phương của tất cả số hạng đó. Hỏi S chia 6 dư bao nhiêu?
Cho \(S=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)
CMR: S không là số tự nhiên
Cho \(n\in N\), p là số nguyên tố và \(a=\dfrac{2n+2}{p};b=\dfrac{4n^2+2n+1}{p}\)là các số nguyên. CMR a,b không đồng thời chính phương
1. Cho \(a,b,c\in Z\), \(a^3+b^3+c^3⋮9\). CMR abc⋮3
2. Tìm p nguyên tố để 2p+1 là lập phương 1 số tự nhiên
3. tìm p, q là các số nguyên tố phân biệt sao cho \(p+q=\left(p-q\right)^3\)
1. Cho \(a,b,c\in Z\), \(a^3+b^3+c^3⋮9\). CMR abc⋮3
2. Tìm p nguyên tố để 2p+1 là lập phương 1 số tự nhiên
3. tìm p, q là các số nguyên tố phân biệt sao cho \(p+q=\left(p-q\right)^3\)