Gọi \(N\left(x_0;y_0\right)\)là điểm cố định mà (d) luôn đi qua.
Ta có : \(2x_0+\left(m-1\right)y_0=1\Leftrightarrow\left(2x_0-y_0-1\right)+my_0=0\)
Vì (d) luôn đi qua một điểm cố định với mọi m nên ta có :
\(\begin{cases}2x_0-y_0-1=0\\my_0=0\end{cases}\)\(\Leftrightarrow\begin{cases}x_0=\frac{1}{2}\\y_0=0\end{cases}\)
Vậy (d) luôn đi qua điểm \(N\left(\frac{1}{2};0\right)\)