BĐT \(\Leftrightarrow\frac{3\left(a^2+b^2+c^2\right)}{9}\ge\frac{\left(a+b+c\right)^2}{9}\)
To finish, we need to prove that :
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
Use Bunhiacopxki :
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
"=" \(\Leftrightarrow a=b=c\)