\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)
\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
Đặt \(t=a^2+3a\) thì ta được:
\(t\left(t+2\right)+1=t^2+2t+1\)
\(=\left(t+1\right)^2=\left(a^2+3a+1\right)^2\)
\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)
\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
Đặt \(t=a^2+3a\) thì ta được:
\(t\left(t+2\right)+1=t^2+2t+1\)
\(=\left(t+1\right)^2=\left(a^2+3a+1\right)^2\)
Rút gọn các biểu thức:
\(A=\left(5a+5\right)^2+10\left(a-3\right)\left(1+a\right)+a^2-6a+9\)
B = \(\left(6a-2\right)^2+4\left(3a-1\right)\left(1-2b\right)\left(2b-1\right)^2\)
Rút gọn
a) \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(5x+5\right)^2\)
b) \(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{18}+1\right)\left(3^{32}+1\right)\)
c) \(C=\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
d) \(D=\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-b-a\right)^2\)
e)\(E=\left(a+b+c+d\right)^2+\left(a+b-c-d\right)^2+\left(a+c-b-d\right)^2+\left(a+d-b-c\right)^2\)
1,Cho \(a^2+b^2+c^2+3=2\left(a+b+c\right)\) .Cmr: \(a=b=c=1\)
2,Cho \(\left(a+b+c\right)^2=3\left(ab+ac+bc\right)\) .Cmr: \(a=b=c\)
3,Cho \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2\) .Cmr: \(a=b=c\)
4,Cho a,b,c,d là các số khác 0 và:
\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\) .Cmr: \(\dfrac{a}{c}=\dfrac{b}{d}\)
5,Cho \(x^2-y^2-z^2=0\) .Cmr: \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)
HELP ME!mik cần gấp lắm rồi!Thank trước nhé!
1)CMR: Biểu thức sau viết được dưới dạng tổng các bình phương của 2 biểu thức
\(A=x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)
2) Viết các biểu thức sau dưới dạng 3 bình phương
a) \(\left(a+b+c\right)^2+a^2+b^2+c^2\)
b)\(2\left(a-b\right)\left(c-d\right)+2\left(b-a\right)\left(c-a\right)+2\left(b-c\right)\left(a-c\right)\)
Rút gọn các biểu thức sau :
a) \(\left(x^2-2x+2\right)\left(x^2-2\right)\left(x^2+2x+2\right)\left(x^2+2\right)\)
b) \(\left(x+1\right)^3+\left(x-1\right)^3-x^3-3x\left(x+1\right)\left(x-1\right)\)
c) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)
d) \(100^2-99^2+98^2+97^2+......+2^2-1^2\)
e) \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)+...+\left(2^{64}+1\right)+1\)
f) \(\left(a+b+c\right)^{^{ }2}+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
1. Rút gọn và tính giá trị biểu thức \(\left(a+3\right)\left(a^2-3a+9\right)-a\left(a-1\right)^2-2\left(a-1\right)\left(a+1\right)\) khi a = 5
2. Cho \(x+y=2,x^2+y^2=20\). Tính \(x^3-y^3\)
3. Tìm giá trị nhỏ nhất của \(A=x^2-6x+2015\)
Bài 1: Tìm x
a) \(\left(5-2x\right)^2-16=0\)
b) \(x^2-4x=29\)
c) \(\left(x-3\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+9.\left(x+1\right)^2=15\)
d) \(2.\left(x-5\right).\left(x+5\right)-\left(x+2\right).\left(2x-3\right)+x.\left(x^2-8\right)=\left(x+1\right).\left(x^2-x+1\right)\)
Bài 2: Rút gọn
a) \(\left(x^2+x+1\right).\left(x^2-x+1\right).\left(x^2-1\right)\)
b) \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2.\left(b-c\right)^2\)
c) \(\left(a+b+c\right)^2-\left(a+b\right)^2-\left(a+c\right)^2-\left(b+c\right)^2\)
d) \(\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2\)
1) Cho \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
CMR: \(a=b=c=1\)
2) CMR: nếu \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\) thì \(\dfrac{a}{x}=\dfrac{b}{y}\)
3) Cho \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
CMR: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
1. Rút gọn, tính giá trị biểu thức :
\(\left(a^3+3\right)\left(a^2-3a+9\right)-a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)\) tại \(a=2017^{2018}\)
2. Tìm x, biết :
a ) \(x\left(x+3\right)-x^2-11=0\)
b ) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=0\)
3. Chứng minh rằng
a ) \(\left(x+y\right)^2-\left(x+y\right)^2=-4xy\)
b ) \(\left(7n-2\right)^2-\left(2n-7\right)^2\) luôn luôn chia hết cho 9, với mọi n nguyên.
4.
a ) Chứng tỏ rằng \(x^2-4x+2017>0\) với mọi x
b ) Tìm giá trị nhỏ nhất của biểu thức :
\(Q=x^2-6x-11\)