Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Đức Mạnh

Bài 1: Tìm x

a) \(\left(5-2x\right)^2-16=0\)

b) \(x^2-4x=29\)

c) \(\left(x-3\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+9.\left(x+1\right)^2=15\)

d) \(2.\left(x-5\right).\left(x+5\right)-\left(x+2\right).\left(2x-3\right)+x.\left(x^2-8\right)=\left(x+1\right).\left(x^2-x+1\right)\)

Bài 2: Rút gọn

a) \(\left(x^2+x+1\right).\left(x^2-x+1\right).\left(x^2-1\right)\)

b) \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2.\left(b-c\right)^2\)

c) \(\left(a+b+c\right)^2-\left(a+b\right)^2-\left(a+c\right)^2-\left(b+c\right)^2\)

d) \(\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2\)

Tài Nguyễn Tuấn
24 tháng 6 2017 lúc 20:25

1. a) $(5-2x)^2-16=0$

$=>(5-2x)^2-4^2=0$

$=>(5-2x-4)(5-2x+4)=0$

$=>(1-2x)(9-2x)=0$

\(=>\left[{}\begin{matrix}1-2x=0=>x=0,5\\9-2x=0=>x=4,5\end{matrix}\right.\)

b) $x^2-4x=29$

$=>x^2-4x-29=0$

$=>(x^2-4x+4)-33=0$

$=>(x-2)^2-(\sqrt{33})^2=0$

$=>(x-2-\sqrt{33})(x-2+\sqrt{33})=0$

\(=>\left[{}\begin{matrix}x-2-\sqrt{33}=0=>x=\sqrt{33}+2\\x-2+\sqrt{33}=0=>x=2-\sqrt{33}\end{matrix}\right.\)

qwerty
24 tháng 6 2017 lúc 20:33

Bài 1:

a) \(\left(5-2x\right)^2-16=0\) (1)

\(\Leftrightarrow\left(5-2x\right)^2=16\)

\(\Leftrightarrow5-2x=\pm4\)

\(\Leftrightarrow\left[{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{1}{2};\dfrac{9}{2}\right\}\)

b) \(x^2-4x=29\) (2)

\(\Leftrightarrow x^2-4x-29=0\)

\(\Leftrightarrow x=\dfrac{4\pm2\sqrt{33}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4+2\sqrt{33}}{2}\\x=\dfrac{4-2\sqrt{33}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{33}\\x=2-\sqrt{33}\end{matrix}\right.\)

Vậy tập nghiệm phương trình (2) là \(S=\left\{2-\sqrt{33};2+\sqrt{33}\right\}\)

c) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\) (3)

\(\Leftrightarrow x^3-9x^2+27x-27-\left(x^3-27\right)+9\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow x^3-9x^2+27x-27-\left(x^3-27\right)+9x^2+18x+9=15\)

\(\Leftrightarrow x^3+27x-27-x^3+27+18x+9=15\)

\(\Leftrightarrow45x+9=15\)

\(\Leftrightarrow45x=15-9\)

\(\Leftrightarrow45x=6\)

\(\Leftrightarrow x=\dfrac{2}{15}\)

Vậy tập nghiệm phương trình (3) là \(S=\left\{\dfrac{2}{15}\right\}\)

d) \(2\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(2x-3\right)+x\left(x^2+8\right)=\left(x+1\right)\left(x^2-x+1\right)\)(4)

\(\Leftrightarrow2\left(x^2-25\right)-\left(2x^2-3x+4x-6\right)+x^3-8x=x^3+1\)

\(\Leftrightarrow2x^2-50-\left(2x^2+x-6\right)+x^3-8x=x^3+1\)

\(\Leftrightarrow2x^2-50-2x^2-x+6-8x=1\)

\(\Leftrightarrow-44-9x=1\)

\(\Leftrightarrow-9x=1+45\)

\(\Leftrightarrow-9x=45\)

\(\Leftrightarrow x=-5\)

Vậy tập nghiệm phương trình (4) là \(S=\left\{-5\right\}\)

qwerty
24 tháng 6 2017 lúc 21:12

Bài 2:

a) \(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)\)

\(=\left(x^4-x^3+x^2+x^3-x^2+x+x^2-x+1\right)\left(x^2-1\right)\)

\(=x^6-x^4+x^4-x^2+x^2-1\)

\(=x^6-1\)

b) \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)

\(=a^2+b^2+\left(-c\right)^2+2ab-2ac+a^2+\left(-b\right)^2+c^2-2ab+2ac-2bc-2\left(b^2+2bc+c^2\right)\)

\(=a^2+b^2+\left(-c\right)^2-2bc+a^2+\left(-b\right)^2+c^2-2bc-2b^2-4bc-2c^2\)

\(=2a^2-b^2+c^2-8bc+\left(-b\right)^2-c^2\)

\(=2a^2-b^2-8bc+b^2\)

\(=2a^2-8bc\)

c) \(\left(a+b+c\right)^2-\left(a+b\right)^2-\left(a+c\right)^2-\left(b+c\right)^2\)

\(=a^2+b^2+c^2+2ab+2ac+2bc-\left(a^2+2ab+b^2\right)-\left(a^2+2ac+b^2\right)-\left(b^2+2bc+c^2\right)\)

\(=a^2+b^2+c^2+2ab+2ac+2bc-a^2-2ab-b^2-a^2-2ac-c^2-b^2-2bc-c^2\)

\(=-a^2-b^2-c^2\)

d) \(\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2\)

\(=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2-2ab-2ac+2bc+\\ b^2+c^2+a^2-2bc-2ab+2ac+c^2+a^2+b^2-2ac-2bc+2ab\)

\(=2a^2+2b^2+2c^2+2\cdot\left(-b\right)^2+2\cdot\left(-c\right)^2+2\cdot\left(-a\right)^2\)

\(=2a^2+2b^2+2c^2+2b^2+2c^2+2a^2\)

\(=4a^2+4b^2+4c^2\)

Trần Thanh Hiếu
24 tháng 6 2017 lúc 20:34

Bài 1:

a) \(\left(5-2x\right)^2-16=0\)

\(\Leftrightarrow\left(5-2x\right)^2=\left(\pm4\right)^2\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-2x=-4\\5-2x=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4,5\\x=0,5\end{matrix}\right.\)

Vậy x=4,5 hoặc x=0,5

b) \(x^2-4x=29\)

\(\Leftrightarrow x^2-4x-29=0\)

\(\Leftrightarrow x^2-4x+4-36=0\)

\(\Leftrightarrow\left(x-2\right)^2-36=0\)

\(\Leftrightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=6\\x-2=-6\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=8\\x=-4\end{matrix}\right.\)

Vậy x=8 hoặc x=-4

Đặng Mai Anh
25 tháng 6 2017 lúc 21:25

._.

Những hằng đẳng thức đáng nhớ

Những hằng đẳng thức đáng nhớ


Các câu hỏi tương tự
Dương Thị Yến Nhi
Xem chi tiết
Linh Nguyen
Xem chi tiết
Phan Hà Thanh
Xem chi tiết
Ngoc An Pham
Xem chi tiết
Võ Lan Nhi
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
KẺ GIẤU TÊN
Xem chi tiết
Đồng Vy
Xem chi tiết
Linh Nguyen
Xem chi tiết