Ta thấy thử cằng lớn thì p/s càng bé
=> A < 3/4
Ta thấy thử cằng lớn thì p/s càng bé
=> A < 3/4
chứng minh rằng A=1+3+31+32+33+34+.....+3102+3103chia hết cho 4
Cho \(A=1+3+3^2+3^3+3^4+...+3^{90}\) CMR \(A\) không phải là số chính phương
Điền vào ô vuông các dấu thích hợp (=; <; >):
a) 2 3 . 5 + 3 4 . 2 - 4 . ( 5 7 : 5 5 ) □ 15 : ( 3 5 : 3 4 ) + 5 . 2 4 - 7 2 - 4 ;
b) ( 3 5 . 3 7 ) : 3 1 0 + 5 . 2 4 □ 5 . 2 2 . 2 3 - 4 . ( 5 8 : 5 6 ) ;
c) 2 [ ( 7 - 3 3 : 3 2 ) : 2 2 + 99 ] - 100 □ 3 4 . 2 + 2 3 . 5 - 7 ( 5 2 - 5 ) ;
d) 207 : { 2 ^ 3 . [ ( 156 - 128 ) : 14 ] + 7 ] □ 117 : { [ 79 - 3 ( 3 ^ 3 - 17 ) ] : 7 + 2 }
cho tổng a=1/3+2/32+3/33+4/34+.....+2022/32022.So sánh với 3/4
Cho S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39. Chứng tỏ rằng S chia hết cho 4.
Cho S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39. Chứng tỏ rằng S chia hết cho 4.
Tính:
\(a.\left(3^{35}+3^{34}-3^{33}\right)\div3^{32}\)
\(b.5^3\times37+5^3\times64-5^7\div5^4\)
Nhanh tay lên đc tick nha
Cho S= 1/3-2/32+3/33-4/34+...+99/399-100/3100. So sánh S và 1/5
Cho S = 1+3+32+33+34+35+36+37+38+39.Chứng tỏ rằng S chia hết cho 4
Giup mik vs
A= 1/3 - 2/ 32 + 3/ 33 - 4/ 34 + .... + 99/ 399 - 100/ 3100 < 3/ 16