Cho hàm số y=f(x) = 4x^2+ 6x-5 a) Lập bảng biến thiên và vẽ đồ thị hàm số y= f(×). b) Từ bảng biến thiên, xác định khoảng đồng biến và nghịch biến và giá trị nhỏ nhất của hàm số trên c) Từ bảng biến thiên tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn [-1;2]
Cho hàm số y=f(x)= -3x^2+10x-4 a) Lập bảng biến thiên và vẽ đồ thị hàm số y= f(×) b) Từ bảng biến thiên, xác định khoảng đồng biến và nghịch biến và giá trị nhỏ nhất của hàm số trên c) Từ bảng biến thiên tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn [-1;2]
Xét tính đồng biến, nghịch biến của hàm số f(x) = x 2 − 4 x + 5 trên khoảng (− ∞ ; 2) và trên khoảng (2; + ∞ ). Khẳng định nào sau đây đúng?
A. Hàm số nghịch biến trên (− ∞ ; 2), đồng biến trên (2; + ∞ ).
B. Hàm số đồng biến trên (− ∞ ; 2), nghịch biến trên (2; + ∞ ).
C. Hàm số nghịch biến trên các khoảng (− ∞ ; 2) và (2; + ∞ ).
D. Hàm số đồng biến trên các khoảng (− ∞ ; 2) và (2; + ∞ ).
Tìm các giá trị của m để hàm số y = x 2 + mx + 5 luôn đồng biến trên (1; + ∞ )
A. m < -2
B. m ≥ -2
C. m = -4
D. Không xác định được
Hàm số y = - x 2 - 4 x + 5 đồng biến trên:
A. ℝ
B. - 4 ; + ∞
C . - 2 ; + ∞
D. - ∞ ; - 2
Câu 94. Cho hàm số y =x2 đồng biến trên khoảng
A.R B.(0,+∞) C.R\{0} D.(-∞,0)
Câu 95. Đỉnh của parabol y=-x2 +2x+3 có tọa độ là bao nhiêu.
Câu 96. Hàm số y=-x2 +2x+3 đồng biến trên khoảng:
A.(-1,+∞)
B.(-∞,-1)
C.(1,+∞)
D.(-∞,1)
Xét tính đồng biến, nghịch biến của hàm số trên các khoảng tương ứng
y = x 2 + 10 x + 9 t r ê n ( - 5 ; + ∞ )
Xét sự biến thiên của hàm số y = 4 x + 5 + x − 1 trên tập xác định của nó. Áp dụng tìm số nghiệm của phương trình 4 x + 5 + x − 1 = 3
A. 1 nghiệm duy nhất
B. 2 nghiệm
C. 3 nghiệm
Vô nghiệm
Xét sự biến thiên của hàm số y = 4 x + 5 + x − 1 trên tập xác định của nó. Áp dụng tìm số nghiệm của phương trình 4 x + 5 + x − 1 = 4 x 2 + 9 + x
A. 1 nghiệm duy nhất
B. 2 nghiệm
C. 3 nghiệm
D. Vô nghiệm