a: Ta có: ΔABC vuông tại A
mà AO là đường trung tuyến
nên AO=OB=OC
=>A nằm trên (O)
Ta có: I là trung điểm của OA
=>OI+IA=OA
=>OI=OA-IA=R-r
=>(O) và (I) tiếp xúc với nhau tại O
b:
Xét (I) có
ΔAEO nội tiếp
AO là đường kính
Do đó: ΔAEO vuông tại E
=>OE\(\perp\)AC
Xét (O) có
ΔADO nội tiếp
AO là đường kính
Do đó: ΔADO vuông tại D
=>OD\(\perp\)AB
Ta có: OE\(\perp\)AC
AB\(\perp\)AC
Do đó: OE//AB
Ta có: OD\(\perp\)AB
AB\(\perp\)AC
Do đó: OD//AC
Xét ΔCAB có
O là trung điểm của CB
OE//AB
Do đó: E là trung điểm của AC
Xét ΔCAB có
O là trung điểm của CB
OD//AC
Do đó: D là trung điểm của AB
Xét (I) có
ΔAHO nội tiếp
AO là đường kính
Do đó: ΔAHO vuông tại H
=>AH\(\perp\)HO tại H
=>AH\(\perp\)BC tại H
=>ΔAHC vuông tại H
mà E là trung điểm của AC
nên Tâm của đường tròn ngoại tiếp ΔAHC là E, bán kính là EA
c: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{BC}{2}\)
d: K đối xứng A qua BC
=>BC là trung trực của AK
=>BC\(\perp\)AK tại trung điểm của AK
Ta có: BC\(\perp\)AK
BC\(\perp\)AH
AK,AH có điểm chung là A
Do đó: K,A,H thẳng hàng
=>BC cắt AK tại H
=>H là trung điểm của AK
Xét ΔCAK có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAK cân tại C
Để ΔCAK đều thì \(\widehat{ACK}=60^0\)
=>\(\widehat{ACB}=\dfrac{1}{2}\cdot60^0=30^0\)