\(P=\dfrac{x^4-x^3-x+1}{x^4+x^3+3x^2+2\left(x+1\right)}=\dfrac{x^3\left(x-1\right)-\left(x-1\right)}{\left(x^4+x^3+x^2\right)+\left(2x^2+2x+2\right)}\)
\(=\dfrac{\left(x^3-1\right)\left(x-1\right)}{x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)}=\dfrac{\left(x-1\right)^2\left(x^2+x+1\right)}{\left(x^2+2\right)\left(x^2+x+1\right)}=\dfrac{\left(x-1\right)^2}{x^2+2}\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\x^2+2\ge2>0\forall x\end{matrix}\right.\)
\(\Rightarrow\dfrac{\left(x-1\right)^2}{x^2+2}\ge0\forall x\Leftrightarrow P\ge0\forall x\)
hay \(P\) không âm với mọi giá trị của \(x\).