=> |a| - |b| \(\le\) |a + b|
Nếu |a| > |b|- Nếu b = 0 thì |a| - |b| = |a| = |a + b|
Bây giờ chỉ còn lại 2 trường hợp với b khác 0
- Nếu a và b cùng dấu, dễ thấy: |a| - |b| < |a| < |a + b| => |a| - |b| < |a + b|
- Nếu a và b trái dấu
+ Nếu a > 0 > b, lại có: |a| > |b| (1)
=> |a| - |b| = a - (-b) = a + b
Từ (1) => bểu thức a + b mang dấu dương, do đó |a + b| = a + b = |a| - |b|
+ Nếu b > 0 > a, lại có: |a| > |b| (2)
=> |a| - |b| = -a - b = -(a + b)
Từ (2) => biểu thức a + b mang dấu âm, do đó |a + b| = -(a + b) = |a| - |b|
Như vậy, |a| - |b|\(\le\) |a + b|
Dấu "=" xảy ra khi b = 0 hoặc a và b cùng bằng 0 hoặc a và b trái dấu ( với b khác 0)