Đề bài sai
Ví dụ với \(x=y=z=2\) thì \(x^2+y^2+z^2< 3xyz\)
Đề bài đúng: \(x^3+y^3+z^3\ge3xyz\) với x;y;z là các số thực không âm
Đề bài sai
Ví dụ với \(x=y=z=2\) thì \(x^2+y^2+z^2< 3xyz\)
Đề bài đúng: \(x^3+y^3+z^3\ge3xyz\) với x;y;z là các số thực không âm
Cho các số x, y, z dương. Chứng minh rằng x2/y2 + y2/z2 + z2/x2 ≥ x/y + y/z + z/x
Cho các số x, y, z dương. Chứng minh rằng x2/y2 + y2/z2 + z2/x2 ≥ x/y + y/z + z/x
Cho các số x, y, z dương. Chứng minh rằng x2/y2 + y2/z2 + z2/x2 ≥ x/y + y/z + z/x
cho x+y+z=0. chứng minh 2(x4+y4+z4)=(x2+y2+z2)2
Chứng minh: x 3 + y 3 + z 3 - 3 x y z = 1 / 2 . x + y + z x - y 2 + y - z 2 + z - x 2
Từ đó chứng tỏ: Với ba số x, y, z không âm thì x 3 + y 3 + z 3 3 ≥ x y z
cho x,y,z là 3 số nguyên thỏa man: x2+y2=z2
Chứng minh A=xy chia hết cho 12
cho ba số dương x, y , z thoả mãn x+y+z=3/4 chứng minh rằng
6(x2+y2+z2)+10(xy+yz+xz)+2(1/(2x+y+z)+1/(x+2y+z)+1/(x+y+2z))>=9
Bài 1 ( Đề thi vào lớp 10 Trường PTNK ĐHQG TP.HCM năm học 2002 - 2003)
Cho x, y, z là các số nguyên thỏa mãn phương trình:
x2+y2=z2
a, Chứng minh rằng trong hai số x, y có ít nhất một số chia hết cho 3.
b, Chứng minh rằng tích xyz chia hết cho 12.
Cho x, y là hai số thực thỏa mãn x y + ( 1 + x 2 ) ( 1 + y 2 ) = 1. Chứng minh rằng x 1 + y 2 + y 1 + x 2 = 0.