bien doi ve phai;
qui dong mau so ta co(( n+1)-n )/n(n+1) = 1/n(n+1)= ve trai (dpcm)
de hon an com suon
;
\(taco\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n.\left(n+1\right)}-\frac{n}{n.\left(n+1\right)}=\frac{n+1-n}{n.\left(n+1\right)}=\frac{1}{n.\left(n+1\right)}\)
Ta có \(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
ta có: 1/n - 1/n+1 = (n+1)1/n(n+1) - 1n/n(n+1) = n+1-n/ n(n+1) = 1/n(n+1)
vì 1/n(n+1)= 1/n(n+1) nên 1/n - 1/n+1 = 1/ n(n+1) ( đccm )
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)