\(pt:2x^2-7\left(5m^3+8m^2-9m+3\right)x-m^2+m-1=0\)
Ta có: \(-m^2+m-1=-\left(m^2-2.m.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\right)=-\left[\left(m-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
Vì \(\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall m\Rightarrow-\left[\left(m-\frac{1}{2}\right)^2+\frac{3}{4}\right]< 0\forall m\)
Lại có: \(2>0\) ( hiển nhiên)
Do \(a.c< 0\Rightarrow\Delta>0\)
\(\Rightarrow pt\) luôn có 2 nghiệm phân biệt