Tìm tham số m để phương trình sau có đúng 2 nghiệm phân biệt: \(x^3-\left(1+m\right)x^2+\left(m-1\right)x+2m-2=0\)
Cho phương trình: \(x^2+\left(2m+1\right)x+m^2-1=0\) (1) ( x là ẩn số). Tìm m để phương trình (1) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn: \(\left(x_1-x_2\right)^2=x_1-5x_2\)
tìm m để phương trình \(x^2+\left(2-m\right)x+m-3=0\) có hai nghiệm phân biệt thỏa mãn \(\left|x_1\right|+x_2^2=2\)
Cho phương trình: \(x^2-2\left(m+1\right)x+2m=0\) ( m là tham số ). Tìm m để pt có 2 nghiệm phân biệt \(x_1,x_2\) thỏa mãn:
\(\sqrt{\left(\sqrt{x_1}+1\right)^2+\left(\sqrt{x_2}+1\right)^2-x_1.x_2}=\sqrt{2\sqrt{2+4}}\)
cho phương trình\(x^2-\left(2m+1\right)x+m^2-m=0\) tìm các giá tri của m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện:\(\left(x_1^2+mx_1+x_2-m^2+m\right)\left(x_2^2+mx_2+x_1-m^2+m\right)=-9\)
Cho PT: \(x^2-\left(3m-1\right)x+2m^2-m=0\). Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(x_1=x_2^2\)
Tìm m để phương trình sau có nghiệm duy nhất
\(\sqrt{x}+\sqrt{1-x}+2m\sqrt{x\left(1-x\right)}-2\sqrt[4]{x\left(1-x\right)}=m^3\)
Cho phương trìn x^2-(3m-1)x+2m^2+2m=0 (1)
a) giải phương trình với m = 1
b) tìm giá trị của m để pt (1) có 2 nghiệm phân biệt x1, x2 sao cho \(\left|x_1-x^{ }_2\right|=2\)
1. GIải các pt :
a) \(x^2-2\left(\sqrt{3}+\sqrt{2}\right)x+4\sqrt{6}=0\)
2. chứng minh rằng các pt sau luôn luôn có nghiệm
a) \(x^2-2\left(m-1\right)x-3-m=0\)
b) \(x^2+\left(m+1\right)x+m=0\)
c) \(x^2-\left(2m-3\right)x+m^2-3m=0\)
d) \(x^2+2\left(m+2\right)x-4m-12=0\)
e) \(x^2-\left(2m-3\right)x+m^2+3m+2=0\)
f) \(x^2-2x-\left(m-1\right)\left(m-3\right)=0\)
3. \(\left(a-3\right)x^2-2\left(a-1\right)x+a-5=0\)
Tìm a để pt có 2 nghiệm phân biệt