cho x;y;z;t là các số thực dương thỏa mãn x+y+z+t=2 HÃY TÌM GTNN của
A= \(\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\)
biết x,y,z,t là các số nguyên và \(x^2+y^2+z^2+t^2⋮12\). chứng minh rằng \(x^2+y^2+z^2+t^2⋮12\)
Cho x ,y ,z là các số nguyên dương thỏa mãn xyz = 1 . Chứng minh rằng :
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{z+1}\ge\frac{3}{2}\)
Cho các số thực x;y;z;t thỏa mãn điều kiện \(a\left(x^2+y^2\right)+b\left(z^2+t^2\right)=1\) với a;b là hai số dương cho trước. Chứng minh: \(\left(x+z\right)\left(y+t\right)\le\frac{a+b}{ab}\)
MỌI NGƯỜI ƠI!! GIẢI GIÚP MÌNH MẤY CÂU NÀY VỚI!!
1, Cho x, y, z, t là các số thực bất kì thuộc đoạn [0;1]
Chứng minh rằng: \(x\left(1-y\right)+y\left(1-z\right)+z\left(1-t\right)+t\left(1-x\right)\le2\)
2, Cho a, b, c là các số thực thỏa mãn: \(\text{|x|, |y|, |z|}\le1\)
Chứng minh rằng: \(\sqrt{1-x^2}+\sqrt{1-y^2}+\sqrt{1-z^2}\le\sqrt{9-\left(x+y+z\right)^2}\)
3, CMR: số \(A=19n^6+5n^5+1890n^3-19n^2-5n+1993\)không phải là một số chính phương
** Giải câu nào cũng được nha!!!
chứng minh rằng ; B= 4x(x+y)(x+y+z)(x+z) + (y^2)(z^2) là một số chính phương vơi x,y,z là các số nguyên
Cho x,y,z là các số thực dương thỏa mãn : x+y+z=xyz
Chứng minh rằng : \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho x,y,z là các số thực dương thỏa mãn điều kiện xy+yz+xz=12. Chứng minh rằng:
\(\sqrt[x]{\dfrac{\left(12+y^2\right)\left(12+z^2\right)}{12+x^2}}\)+ \(\sqrt[y]{\dfrac{\left(12+x^2\right)\left(12+z^2\right)}{12+y^2}}\)+ \(\sqrt[z]{\dfrac{\left(12+x^2\right)\left(12+y^2\right)}{12+z^2}}\)
Cho các số dương x,y,z thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2018\)
Tìm min T = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Tìm cá số x,y,z nguyên dương thỏa mãn (x+1)(y+z)=xyz+2