Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{b}=\dfrac{bk}{b}=k\)
\(\dfrac{a+2c}{b+2d}=\dfrac{bk+2dk}{b+2d}=k\)
Do đó: a/b=a+2c/b+2d
Đặt \(\dfrac{a}{b}=k;\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\dfrac{a}{b}=\dfrac{bk+2dk}{b+2d}=k\)
vậy ta có đpcm
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\) ⇒ \(ad=bc\) ⇒ \(ab+ad=ab+bc\)
⇒ \(a\left(b+d\right)=b\left(a+c\right)\Rightarrow\) \(\dfrac{a}{b}=\dfrac{a+2c}{b+2d}\)