a: \(P=3^3\left(123^3-73^3\right)\)
\(=3\cdot9\cdot\left(123-73\right)\cdot A=1350\cdot A\cdot3⋮1350\)
b: \(=4^3\left(93^4+32^4\right)\)
\(=4^3\left(93+32\right)\cdot A=125\cdot64\cdot A=8000\cdot A⋮8000\)
a: \(P=3^3\left(123^3-73^3\right)\)
\(=3\cdot9\cdot\left(123-73\right)\cdot A=1350\cdot A\cdot3⋮1350\)
b: \(=4^3\left(93^4+32^4\right)\)
\(=4^3\left(93+32\right)\cdot A=125\cdot64\cdot A=8000\cdot A⋮8000\)
Cho a và b là các số tự nhiên . Chứng minh rằng nếu a3+b3 chia hết cho 3 thì a+b cũng chia hết cho 3
Chứng minh: A= n3+6n2+8n chia hết cho 48 với n chẵn
Biết số nguyên tố p>3
Chứng minh: p^2 - 1 chia hết cho 24
Chứng minh rằng:
B = 512 + 56 chia hết cho 650
Chứng minh rằng :
n(n^4-16)chia hết cho 15 (n thuộc Z)
Cho: a = b + c. Chứng minh rằng:
\(\dfrac{a^3+b^3}{a^3+c^3}\) = \(\dfrac{a+b}{a+c}\)
Cho a,b,c là những số nguyên thoả mãn: \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)CM: a3+b3+c3 chia hết cho 3.
1 like cho bạn nào trả lời đúng.
bài 1 cho a+b=1. tính gái trị M = 2(a3+b3) - 3(a3+b3)
bài 2 với n là số tự nhiên cmr
a,11n+2+122n+1(chia hết 133)
b, 5n+2+26.5n+82n+1 (chia hết cho 59)
giúp mình vói mình đang cần gấp
Cho x,y,z thuộc Z và P=(x+2012)5+(2y-2013)5+(3z+2014)5; S=x+2y+3z+2013
CMR: P chia hết cho 3 tương đương S chia hết cho 3