\(3a^3+7b^3\ge3a^3+6b^3\)
\(=3a^3+3b^3+3b^3\)
\(\ge3\sqrt[3]{3.a^3.3.b^3.3.b^3}=9ab^2\)
Dấu = xảy ra khi a = b = 0
\(3a^3+\frac{7}{2}b^3+\frac{7}{2}b^3\ge3\sqrt[3]{3a^3.\frac{7}{2}b^3.\frac{7}{2}b^3}=ab^2.3\sqrt[3]{\frac{147}{4}}>9ab^2\)
\(3a^3+7b^3\ge3a^3+6b^3\)
\(=3a^3+3b^3+3b^3\)
\(\ge3\sqrt[3]{3.a^3.3.b^3.3.b^3}=9ab^2\)
Dấu = xảy ra khi a = b = 0
\(3a^3+\frac{7}{2}b^3+\frac{7}{2}b^3\ge3\sqrt[3]{3a^3.\frac{7}{2}b^3.\frac{7}{2}b^3}=ab^2.3\sqrt[3]{\frac{147}{4}}>9ab^2\)
Chứng minh rằng \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) với \(\forall a,b\)
Chứng minh rằng: \(\sqrt{a^2+b^2}\ge\frac{a+b}{\sqrt{2}}\) với mọi a, b \(\ge\)0
Cho a, b, c ≥ 0. Chứng minh các bất đẳng thức sau:
\(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\forall a,b,c>0\)
Chứng minh:
a)\(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
b)\(\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\forall a,b>0\)
c) Với a>b>0 và m>n (m,n \(\in\)N) chứng minh:
\(\frac{a^m-b^m}{a^m+b^m}>\frac{a^n-b^n}{a^n+b^n}\)
Chứng minh:
\(a^n+b^n+c^n\ge\left(\frac{a+2b}{3}\right)^n+\left(\frac{b+2c}{3}\right)^n+\left(\frac{c+2a}{3}\right)^n,\forall a,b,c>0;n\in N\)
Chứng minh rằng:
\(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)(Với a, b >= 0)
Chứng minh rằng với 0<=a,b<=90 thì
\(\frac{tana+tanb}{2}\ge tan\frac{a+b}{2}\)
\(\frac{cota+cotb}{2}\ge cot\frac{a+b}{2}\)
Bài 1: Cho a>0;b>0;c>0 thỏa mãn abc=1. Chứng minh rằng:
a)\(a^3+b^3+c^3\ge a+b+c\)
b) \(a^3+b^3+c^3\ge a^2+b^2+c^2\)
Bài 2: Với mọi a,b,c là các số thực. Chứng minh rằng:
\(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge a +b+c\)
Bài 3: Cho x,y,z là các số thực dương thỏa mãn \(x+y+z\le1\)
Chứng minh rằng: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
Cho a,b >0 và ab \(\ge\)1. chứng minh rằng:
\(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)