\(2\sqrt{2}\left[\sqrt{3}-2\right]+\left[1+2\sqrt{2}\right]^2-2\sqrt{6}\)
=\(2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}\)
=9
\(2\sqrt{2}\left[\sqrt{3}-2\right]+\left[1+2\sqrt{2}\right]^2-2\sqrt{6}\)
=\(2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}\)
=9
chứng minh rằng:\(\dfrac{1}{3\left(\sqrt{1}+\sqrt{2}\right)}+\dfrac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\dfrac{1}{97\left(\sqrt{48}+\sqrt{49}\right)}< \dfrac{3}{7}\)
Cho 0<x<2. Chứng minh rằng:
\(\dfrac{4-\sqrt{4-x^2}}{\sqrt{\left(2+x\right)^3}+\sqrt{\left(2-x\right)^3}}\) + \(\dfrac{4+\sqrt{4-x^2}}{\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}}\) = \(\dfrac{\sqrt{2+x}}{x}\)
Bài 1: Rút gọn biểu thức:
\(A=\frac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\left(a>2\right)\)
\(B=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\left(ab\ne0\right)\)
Bài 2: Tính giá trị của biểu thức:
\(E=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{2017\sqrt{2018}+2018\sqrt{2017}}\)
Bài 3: Chứng minh rằng các biểu thức sau có gúa trị là số nguyên
\(A=\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)
\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Chứng minh
\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)
\(c,2\sqrt{2}\left(3-\sqrt{2}\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
\(e,\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
\(f,\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
chứng minh
\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
Chứng minh
\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)
\(c,2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
\(e,\left(3+\sqrt{5}\right)\left(10-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
\(f,\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
Chứng minh các đẳng thức sau:
e) \(\left(\dfrac{3}{2}.\sqrt{6}+2.\sqrt{\dfrac{2}{3}}-4.\sqrt{\dfrac{3}{2}}\right).\left(\dfrac{3}{2}.\sqrt{6}+2.\sqrt{\dfrac{2}{3}}+4.\sqrt{\dfrac{3}{2}}\right)=-\sqrt{2}\)