Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Hương giang

chứng minh rằng 2n3 +3n2+7n chia hết cho 6

soyeon_Tiểu bàng giải
12 tháng 10 2016 lúc 17:25

Ta có:

2n3 + 3n2 + 7n

= 2n3 + 2n2 + n2 + n + 6n

= 2n2.(n + 1) + n.(n + 1) + 6n

= (n + 1).(2n2 + n) + 6n

= (n + 1).n.(2n + 1) + 6n

Vì 6n chia hết cho 6 nên ta phải chứng minh (n + 1).n.(2n + 1) chia hết cho 6

Vì (n + 1).n là tích 2 số tự nhiên liên tiếp nên (n + 1).n chia hết cho 2 => (n + 1).n.(2n + 1) chia hết cho 2 (1)+ Với n = 3k thì n chia hết cho 3 => (n + 1).n.(2n + 1) chia hết cho 3

+ Với n = 3k + 1 thì 2n + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 chia hết cho 3 => (n + 1).n.(2n + 1) chia hết cho 3

+ Với n = 3k + 2 thì n + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 => (n + 1).n.(2n + 1) chia hết cho 3

Như vậy, (n + 1).n.(2n + 1) chia hết cho 3 (2)

Từ (1) và (2), mà (2;3)=1 => (n + 1).n.(2n + 1) chia hết cho 6

=> (n + 1).n.(2n + 1) + 6n chia hết cho 6

=> 2n3 + 3n2 + 7n chia hết cho 6 (đpcm)


Các câu hỏi tương tự
Mun SiNo
Xem chi tiết
Hoàng Hưng Đạo
Xem chi tiết
Nguyên Lê
Xem chi tiết
Ngô Minh Ngọc
Xem chi tiết
Hoàng Hưng Đạo
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Hannah Ngô
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết
Pham Trong Bach
Xem chi tiết