Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Lê Phước Thịnh

Chứng minh phương trình \(3x^4-3x^3-5x^2+2x+2=0\) có ít nhất 2 nghiệm nằm trong khoảng (-1;1)

Nguyễn Việt Lâm
4 tháng 3 2023 lúc 23:54

Đặt \(f\left(x\right)=3x^4-3x^3-5x^2+2x+2\)

Hiển nhiên \(f\left(x\right)\) liên tục trên R cũng như mọi khoảng con của nó

\(f\left(-1\right)=1>0\)

\(f\left(-\dfrac{3}{4}\right)=-\dfrac{25}{256}< 0\)

\(f\left(0\right)=2>0\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-1\right).f\left(-\dfrac{3}{4}\right)< 0\\f\left(-\dfrac{3}{4}\right).f\left(0\right)< 0\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\) có ít nhất 2 nghiệm thuộc (-1;0) nên có ít nhất 2 nghiệm thuộc (-1;1)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
títtt
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Hoàng Ngọc nhi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
NGUyễn Phương
Xem chi tiết
Pham Trong Bach
Xem chi tiết