đồ ngu, người ta nói chứng minh mà 5 ở đâu đây
Giả sử A = n^2 + 3n + 5 chia hết cho 121
=> 4A = 4n^2 + 12n + 20 chia hết cho 121
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1)
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11)
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2)
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí)
Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N . k cho mình nha bạn