Ta có :\(\frac{\log_ab+\log c_a}{1+\log_ac}=\frac{\log_abc}{\log_aa+\log_ac}=\frac{\log_a\left(bc\right)}{\log_a\left(ac\right)}=\log_{ac}\left(bc\right)\)
Ta có :\(\frac{\log_ab+\log c_a}{1+\log_ac}=\frac{\log_abc}{\log_aa+\log_ac}=\frac{\log_a\left(bc\right)}{\log_a\left(ac\right)}=\log_{ac}\left(bc\right)\)
Rút gọn biểu thức sau :
\(A=\left(\log_ab+\log_ba+2\right)\left(\log_ab-\log_{ab}b\right)\log_ba-1\)
Cho \(\log_ab=3;\log_ac=-2\)
Tính \(\log_ax\) biết :
1. \(x=a^3b^2\sqrt{c}\)
2. \(x=\frac{a^4\sqrt[3]{b}}{c^3}\)
3. \(x=\log_a\frac{a^2\sqrt[3]{b}c}{\sqrt[3]{a\sqrt{c}}b^3}\)
Chứng minh :
Nếu \(a^2+4b^2=12ab\) thì \(\log_{2013}\left(a+2b\right)-2\log_{2013}2=\frac{1}{2}\left(\log_{2013}a+\log_{2013}b\right)\)
Cho các số thực a, b, c thỏa mãn 1 < a < b < c. Chứng minh rằng :
\(\log_a\left(\log_ab\right)+\log_b\left(\log_bc\right)+\log_c\left(\log_ca\right)>0\)
Giải bất phương trình :
\(\log_{\frac{1}{2}}\left(4^x+4\right)\ge\log_{\frac{1}{2}}\left(2^{x+1}-3\right)-\log_22^x\)
Chứng minh nếu \(a=\log_{12}18;b=\log_{24}54\) thì \(ab+5\left(a-b\right)=1\)
Chứng minh :
Trong 3 số : \(\log_{\frac{a}{b}}^2\frac{c}{b};\log_{\frac{b}{c}}^2\frac{a}{c};\log_{\frac{c}{a}}^2\frac{b}{a}\) luôn có ít nhất một số lớn hơn 1
Tìm tập xác định của hàm số :
\(y=\log_{2x+1}\left(3x+1\right)-2\log_{3x+1}\left(2x+1\right)\)
Giải phương trình :
\(2\log_3\left(4x-3\right)+\log_{\frac{1}{3}}\left(2x+3\right)=2\)