a/ Chứng minh:
\(\left(x+a\right)\left(x+b\right)\)
\(=x^2+bx+ax+ab\)
\(=x^2+\left(ax+bx\right)+ab\)
\(=x^2+x\left(a+b\right)+ab=VP\) (đpcm)
b/ Chứng minh:
\(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left(x^2+ax+bx+ab\right)\left(x+c\right)\)
\(=x^3+cx^2+ax^2+acx+bx^2+bcx+abx+abc\)
\(=x^3+\left(ax^2+bx^2+cx^2\right)+\left(abx+bcx+acx\right)+abc\)
\(=x^3+x^2\left(a+b+c\right)+x\left(ab+bc+ac\right)+abc=VP\) (đpcm)