=(ab+ac+b^2+bc)- (cd+ca+d^2+ad)-(ab-ad+cb-cd)
=ab+ac+b^2+bc-cd-ca-d^2-ad-ab+ad-cb+cd
=b^2-d^2
\(\left(a+b\right)\left(b+c\right)-\left(c+d\right)\left(d+a\right)-\left(a+c\right)\left(b-d\right)\)
\(=\left(ab+ac+b^2+bc\right)-\left(cd+ac+d^2+ad\right)-\left(ab-ad+bc-cd\right)\)
\(=ab+ac+b^2+bc-cd-ac-d^2-ad-ab+ad-bc+cd\)
\(=b^2-d^2.\)
Vậy \(\left(a+b\right)\left(b+c\right)-\left(c+d\right)\left(d+a\right)-\left(a+c\right)\left(b-d\right)=b^2-d^2\).