1; (a + b)2 + (a - b)2 = 2.(a2 + b2)
a2 + 2ab + b2 + a2 - 2ab + b2
= (a2 + a2) + (b2 + b2) +(2ab - 2ab)
= 2a2 + 2b2 + 0
= 2.(a2 + b2) (đpcm)
1.\(VT=a^2+2ab+b^2+a^2-2ab+b^2\)
\(=2a^2+2b^2\)
\(=2.\left(a^2+b^2\right)\left(dpcm\right)\)
2. \(VT=a^2+2ab+b^2-\left(a^2-2ab+b^2\right)\)
\(=a^2+2ab+b^2-a^2+2ab-b^2\)
\(=4ab\left(dpcm\right)\)
3.\(VT=\left(a^2+b^2+c^2+2ab+2bc+2ac\right)+\left(b^2+c^2+a^2+2bc-2ab-2ac\right)+\left(c^2+a^2+b^2+2ac-2bc-2ab\right)+\left(a^2+b^2+c^2+2ab-2bc-2ac\right)\) \(=4a^2+4b^2+4c^2\)
\(=4.\left(a^2+b^2+c^2\right)\left(dpcm\right)\)
2; CM: (a + b)2 - (a - b)2 = 4ab
(a + b)2 - (a - b)2
= a2 + 2ab + b2 - (a2 - 2ab + b2)
= a2 + 2ab + b2 - a2 + 2ab - b2
= (2ab + 2ab) + (a2 - a2) + (b2 - b2)
= 4ab + 0 + 0
= 4ab (đpcm)
1) \(Vế.trái=a^2+2ab+b^2+a^2-2ab+b^2=2a^2+2b^2=2\left(a^2+b^2\right)=vê.phải\)
\(\Rightarrowđpcm\)
2) \(Vế.trái=a^2+2ab+b^2-a^2+2ab-b^2=4ab=vế.phải\)
\(\Rightarrowđpcm\)
@ Rái cá máu lửa lần sau em không nên bỏ bước em nhé!