Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Hải Long

Chứng minh các hệ thức sau : 
1. (a+b)2+(a-b)2 = 2(a2+b2)

2. (a+b)2 - (a-b)2 = 4ab

3.(a+b+c)2 + (b+c-a)2 + (c+a+-b)2 + (a+b-c)2  = 4(a2+b2+c2)

1; (a + b)2 + (a - b)2 = 2.(a2 + b2)

    a2 + 2ab + b2 + a2 - 2ab + b2 

= (a2 + a2) + (b2 + b2)  +(2ab - 2ab)

= 2a2 + 2b2 + 0

= 2.(a2 + b2) (đpcm)

 

   

Rái cá máu lửa
15 tháng 10 lúc 10:04

1.\(VT=a^2+2ab+b^2+a^2-2ab+b^2\)
          \(=2a^2+2b^2\)
          \(=2.\left(a^2+b^2\right)\left(dpcm\right)\)
2. \(VT=a^2+2ab+b^2-\left(a^2-2ab+b^2\right)\)
          \(=a^2+2ab+b^2-a^2+2ab-b^2\)
          \(=4ab\left(dpcm\right)\)
3.\(VT=\left(a^2+b^2+c^2+2ab+2bc+2ac\right)+\left(b^2+c^2+a^2+2bc-2ab-2ac\right)+\left(c^2+a^2+b^2+2ac-2bc-2ab\right)+\left(a^2+b^2+c^2+2ab-2bc-2ac\right)\)      \(=4a^2+4b^2+4c^2\)
      \(=4.\left(a^2+b^2+c^2\right)\left(dpcm\right)\)

2; CM: (a + b)2 - (a - b)2 = 4ab

   (a + b)2 - (a - b)2

= a2 + 2ab + b2 - (a2 - 2ab + b2)

= a2 + 2ab + b2 - a2 + 2ab - b2

= (2ab + 2ab) + (a2 - a2) + (b2 - b2)

= 4ab + 0 + 0

= 4ab (đpcm)

Nguyễn Đức Trí
15 tháng 10 lúc 10:05

1) \(Vế.trái=a^2+2ab+b^2+a^2-2ab+b^2=2a^2+2b^2=2\left(a^2+b^2\right)=vê.phải\)

\(\Rightarrowđpcm\)

2) \(Vế.trái=a^2+2ab+b^2-a^2+2ab-b^2=4ab=vế.phải\)

\(\Rightarrowđpcm\)

@ Rái cá máu lửa lần sau em không nên bỏ bước em nhé!


Các câu hỏi tương tự
Phạm Hải Nam
Xem chi tiết
dung tran
Xem chi tiết
Thành Trung Nguyễn Danh...
Xem chi tiết
你混過 vulnerable 他 難...
Xem chi tiết
Giang Nguyen
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Bùi Tiến Hùng
Xem chi tiết
Dr.STONE
Xem chi tiết
Nguyễn Tuấn Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết